
Simulink® Design Verifier™ 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Design Verifier™ User’s Guide
© COPYRIGHT 2007–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 1.2 (Release 2008a)
October 2008 Online only Revised for Version 1.3 (Release 2008b)
March 2009 Online only Revised for Version 1.4 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Acknowledgment

Acknowledgment
The Simulink® Design Verifier™ software uses Prover Plug-In® products from
Prover® Technology to generate test cases and prove model properties.

�

Acknowledgment

Contents

Acknowledgment

Getting Started

1
Product Overview . 1-2

Before You Begin . 1-3
What You Need to Know . 1-3
Required Products . 1-3

Starting the Simulink® Design Verifier Software 1-4

Analyzing a Model . 1-6
About This Demo . 1-6
Opening the Model . 1-6
Generating Test Cases . 1-7
Combining Test Cases . 1-23

Analyzing a Subsystem . 1-26

Basic Workflow for Using the Simulink® Design Verifier
Software . 1-30

Learning More . 1-31
Next Step . 1-31
Product Help . 1-31
The MathWorks Online . 1-32

v

How the Simulink® Design Verifier Software
Works

2
Model Analysis with Simulink® Design Verifier
Software . 2-2

Analyzing a Simple Model . 2-3

Analyzing Large Models . 2-5

Handling Incompatibilities with Automatic
Stubbing . 2-6
What Is Automatic Stubbing? . 2-6
Analyzing a Model Using Automatic Stubbing 2-6

Approximations . 2-14
Approximations During Model Analysis 2-14
Types of Approximations . 2-14
Converting Floating-Point Arithmetic to Rational-Number
Arithmetic . 2-14

Linearizing 2-D Lookup Tables . 2-15
Unrolling While Loops . 2-15
Ensuring the Validity of the Analysis 2-15

Ensuring Compatibility with the Simulink®
Design Verifier Software

3
Checking Model Compatibility . 3-2
Model Is Compatible . 3-3
Model Is Incompatible . 3-4
Some Model Elements Are Incompatible 3-5

Unsupported Simulink Software Features 3-8
Simulink Software Features Not Supported 3-8
Simulink Block Support Limitations 3-9

vi Contents

Unsupported Stateflow Software Features 3-12

Support Limitations for the Embedded MATLAB
Subset . 3-14
Unsupported Embedded MATLAB Subset Features 3-14
Limitations of Embedded MATLAB Library Function
Support . 3-15

Fixed-Point Support Limitations . 3-17

Working with Block Replacements

4
About Block Replacements . 4-2

Built-In Block Replacements . 4-3

Template for Block Replacement Rules 4-6

Defining Custom Block Replacements 4-7
About Custom Block Replacements 4-7
Specifying Replacement Blocks . 4-7
Writing Block Replacement Rules . 4-10

Executing Block Replacements . 4-15
Configuring Block Replacements . 4-15
Replacing Blocks in a Model . 4-16

Specifying Parameter Configurations

5
About Parameter Configurations . 5-2

Template for Parameter Configurations 5-3

vii

Defining Parameter Configurations 5-4

Parameter Configuration Example 5-7
About This Example . 5-7
Constructing the Example Model . 5-8
Parameterizing the Constant Block 5-10
Specifying a Parameter Configuration 5-11
Analyzing the Example Model . 5-13
Simulating the Test Cases . 5-15

Configuring Simulink® Design Verifier Options

6
Viewing Simulink® Design Verifier Options 6-2

Configuring Simulink® Design Verifier Options 6-5
Design Verifier Pane . 6-5
Block Replacements Pane . 6-7
Parameters Pane . 6-9
Test Generation Pane . 6-10
Property Proving Pane . 6-12
Results Pane . 6-14
Report Pane . 6-17

Saving Simulink® Design Verifier Options 6-19

Generating Test Cases

7
About Test Case Generation . 7-2

Basic Workflow for Generating Test Cases 7-3

Generating Test Cases for a Model 7-4
About This Example . 7-4

viii Contents

Constructing the Example Model . 7-5
Checking Compatibility of the Example Model 7-6
Configuring Test Generation Options 7-10
Analyzing the Example Model . 7-13
Customizing Test Generation . 7-21
Reanalyzing the Example Model . 7-25
Analyzing Contradictory Models . 7-29

Generating Test Cases for a Subsystem 7-30

Proving Properties of a Model

8
About Property Proofs . 8-2

Basic Workflow for Proving Model Properties 8-3

Proving Properties in a Model . 8-4
About This Example . 8-4
Constructing the Example Model . 8-5
Checking Compatibility of the Example Model 8-6
Instrumenting the Example Model 8-10
Configuring Property-Proving Options 8-13
Analyzing the Example Model . 8-15
Customizing the Example Proof . 8-21
Reanalyzing the Example Model . 8-24
Analyzing Contradictory Models . 8-25

Proving Properties in a Subsystem 8-27

Proving Complex Properties . 8-28
Property-Proving Examples . 8-28

ix

Reviewing the Results

9
Examining Simulink® Design Verifier Data Files 9-2
About Simulink® Design Verifier Data Files 9-2
Overview of the sldvData Structure 9-2
Model Information Fields in sldvData 9-3
Simulating Models with Simulink® Design Verifier Data
Files . 9-7

Exploring Test Harness Models . 9-8
About Test Harness Models . 9-8
Anatomy of a Test Harness . 9-8
Configuration of the Test Harness . 9-13
Simulating the Test Harness . 9-13

Creating a SystemTest TEST-File 9-15

Understanding Simulink® Design Verifier Reports 9-18
About Simulink® Design Verifier Reports 9-18
Front Matter . 9-18
Summary Chapter . 9-19
Analysis Information Chapter . 9-20
Test / Proof Objectives Status Chapter 9-25
Model Items Chapter . 9-29
Test Cases / Properties Chapter . 9-29

Analyzing Large Models and Improving
Performance

10
Sources of Model Complexity . 10-2

Analyzing a Large Model . 10-3
Types of Large Model Problems . 10-3
Using the Default Parameter Values 10-4
Modifying the Analysis Parameters 10-5
Using the Large Model Optimization 10-6

x Contents

Stopping the Analysis Before Completion 10-6

Generating Reports for Large Models 10-8

Managing Model Data to Simplify the Analysis 10-9
Simplifying Data Types . 10-9
Constraining Data . 10-9

Partitioning Model Inputs and Generating Tests
Incrementally . 10-13

Analyzing the Model Using a Bottom-Up Approach . . . 10-15

Analyzing Logical Operations . 10-16

Handling Models with Large State Spaces 10-17

Handling Problems with Counters and Timers 10-18

Techniques for Proving Properties of Large Models . . 10-20

Function Reference
11

Block Reference
12

Configuration Parameters

13
Design Verifier Pane . 13-2

xi

Design Verifier Pane Overview . 13-3
Mode . 13-3
Maximum analysis time . 13-5
Display unsatisfiable test objectives 13-6
Automatic stubbing of unsupported blocks and functions . . 13-7
Output directory . 13-8
Make output file names unique by adding a suffix 13-9

Design Verifier Pane: Block Replacements 13-10
Block Replacements Pane Overview 13-11
Apply block replacements . 13-12
List of block replacement rules . 13-13
File path of the output model . 13-14

Design Verifier Pane: Parameters 13-15
Parameters Pane Overview . 13-16
Apply parameters . 13-16
Parameter configuration file . 13-16

Design Verifier Pane: Test Generation 13-18
Test Generation Pane Overview . 13-19
Model coverage objectives . 13-20
Test conditions . 13-21
Test objectives . 13-22
Maximum test case steps . 13-23
Test suite optimization . 13-24

Design Verifier Pane: Property Proving 13-26
Property Proving Pane Overview . 13-27
Assertion blocks . 13-28
Proof assumptions . 13-29
Strategy . 13-30
Maximum violation steps . 13-31

Design Verifier Pane: Results . 13-32
Results Pane Overview . 13-34
Save test data to file . 13-35
Data file name . 13-36
Include expected output values . 13-37
Randomize data that does not affect outcome 13-39
Save test harness as model . 13-41
Harness model file name . 13-42

xii Contents

Reference input model in generated harness 13-43
Save test harness as SystemTest TEST-file (will reference
saved data file) . 13-44

SystemTest file name . 13-45

Design Verifier Pane: Report . 13-46
Report Pane Overview . 13-47
Generate report of the results . 13-48
Report file name . 13-49
Include screen shots of properties and text objectives 13-50
Display report . 13-51

Parameter Command-Line Information Summary 13-52

Simulink Block Support

14
Overview of Simulink Block Support 14-2

Additional Math and Discrete Library 14-3

Commonly Used Blocks Library . 14-4

Continuous Library . 14-5

Discontinuities Library . 14-6

Discrete Library . 14-7

Logic and Bit Operations . 14-8

Lookup Tables Library . 14-9

Math Operations . 14-10

xiii

Model Verification Library . 14-12

Model-Wide Utilities Library . 14-13

Ports & Subsystems Library . 14-14

Signal Attributes Library . 14-15

Signal Routing Library . 14-16

Sinks Library . 14-17

Sources Library . 14-18

User-Defined Functions Library . 14-19

Embedded MATLAB Subset Support

15

Glossary

Examples

A
Automatic Stubbing . A-2

Working with Block Replacements A-2

Specifying Parameter Configurations A-2

xiv Contents

Generating Test Cases . A-2

Proving Properties of a Model . A-2

Index

xv

xvi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Before You Begin” on page 1-3

• “Starting the Simulink® Design Verifier Software” on page 1-4

• “Analyzing a Model” on page 1-6

• “Analyzing a Subsystem” on page 1-26

• “Basic Workflow for Using the Simulink® Design Verifier Software” on
page 1-30

• “Learning More” on page 1-31

1 Getting Started

Product Overview
The Simulink Design Verifier software extends the Simulink® product by
performing exhaustive formal analyses of your models to confirm that they
behave correctly.

The Simulink Design Verifier software allows you to perform the following
tasks:

• Generate test cases that achieve model coverage and custom objectives
you specify in a model.

• Prove properties that you specify in a model, and identify examples of any
property violations.

• Detect unreachable design elements in a model, such as inaccessible
subsystems, illegal switch conditions, and unachievable states.

• Produce detailed reports regarding test case generation and property
proofs.

1-2

Before You Begin

Before You Begin

In this section...

“What You Need to Know” on page 1-3
“Required Products” on page 1-3

What You Need to Know
Getting started with the Simulink Design Verifier software requires that you
have some experience using model coverage, as well as building and running
Simulink models.

To learn more about these topics, see the following:

• “Using Model Coverage” in the Simulink® Verification and Validation™
User’s Guide

• Simulink Getting Started Guide and Simulink User’s Guide

Required Products
You must have the following products installed to use the Simulink Design
Verifier software:

• MATLAB®

• Simulink

• Simulink Verification and Validation

If you want to use the Simulink Design Verifier software with Stateflow®
charts, you must have the following software product:

• Stateflow

1-3

1 Getting Started

Starting the Simulink Design Verifier Software
The Simulink Design Verifier software is part of your MATLAB installation.

To open the Simulink Design Verifier block library, type simulink at the
MATLAB prompt to display the Simulink Library Browser, and then select
the Simulink Design Verifier entry in the contents tree.

1-4

Starting the Simulink® Design Verifier™ Software

Alternatively, type sldvlib at the MATLAB prompt to display the Simulink
Design Verifier library.

1-5

1 Getting Started

Analyzing a Model

In this section...

“About This Demo” on page 1-6
“Opening the Model” on page 1-6
“Generating Test Cases” on page 1-7
“Combining Test Cases” on page 1-23

About This Demo
The following sections describe a demo model, Cruise Control Test Generation.
This demo illustrates how to use the Simulink Design Verifier software to
generate test cases that achieve complete model coverage. Through this
demo, you learn how to analyze models with the Simulink Design Verifier
software and interpret the results.

Opening the Model
To open the Cruise Control Test Generation model, enter
sldvdemo_cruise_control at the MATLAB prompt.

The Cruise Control Test Generation model opens.

1-6

Analyzing a Model

Generating Test Cases

• “Running the Analysis” on page 1-8

1-7

1 Getting Started

• “Exploring the Test Harness” on page 1-10

• “Interpreting the Simulink® Design Verifier HTML Report” on page 1-15

Running the Analysis
To generate test cases for the Cruise Control Test Generation model, open the
model window and double-click the block labeled Run.

The Simulink Design Verifier software begins analyzing the model to generate
test cases. During its analysis, the software displays a log window.

1-8

Analyzing a Model

The log window updates you on the progress of the Simulink Design Verifier
software as it analyzes the model.

1-9

1 Getting Started

Note If you need to terminate an analysis while it is running, click Stop.
The software asks you if you want to produce results. If you click Yes, the
software creates the data file and report based on the results achieved so far.
The names of those files appear in the log window.

When the Simulink Design Verifier software completes its analysis, it opens:

• Test harness model: sldvdemo_cruise_control_harness.mdl

• Signal Builder dialog box containing the test-case signals

• HTML report containing the analysis results:
sldvdemo_cruise_control_report.html

The sections that follow describe the test harness, the Signal Builder data,
and the HTML report in detail.

Exploring the Test Harness
The Simulink Design Verifier software creates a test harness model when
it completes its analysis. The test harness for the Cruise Control Test
Generation model appears as shown in the following figure.

1-10

Analyzing a Model

1 The block labeled Test Case Explanation is a DocBlock block that
documents the generated test cases. Double-click the Test Case
Explanation block to view a description of each test case in terms of the
objectives that the test case satisfies.

1-11

1 Getting Started

2 The block labeled Test Unit is a Subsystem block that contains a copy of
the original model the software analyzed. Double-click the Test Unit block
to view its contents and confirm that it is a copy of the Cruise Control Test
Generation model.

1-12

Analyzing a Model

3 The block labeled Inputs is a Signal Builder block that contains the
generated test case signals. Double-click the Inputs block to open the
Signal Builder dialog box and view the 10 test case signals.

4 In the Signal Builder dialog box, click the right-facing arrow next to the
test case tabs to find the Test Case 8 tab.

5 Click the Test Case 8 tab to display the signal values for Test Case 8.

1-13

1 Getting Started

In Test Case 8 at 0.1 seconds:

• The enable signal remains 1.

• The brake signal transitions from 0 to 1.

• The inc and set signals transition from 1 to 0.

1-14

Analyzing a Model

• The dec and speed signals remain 0.

This group of signals achieves the test objectives described in the Test
Case Explanation block.

6 To confirm that the Simulink Design Verifier software achieved complete
model coverage, simulate the test harness using all the test cases. In the

Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness using all the test cases,
while the Simulink Verification and Validation software collects model
coverage information and displays a coverage report with the following
summary.

The coverage report indicates the Simulink Design Verifier software
generated test cases that achieve complete coverage for the Cruise Control
Test Generation model.

Interpreting the Simulink Design Verifier HTML Report
The Simulink Design Verifier software creates an HTML report that
summarizes its analysis results.

If the report is not open in a Web Browser window, open it now. The path
name is:

matlabroot/sldv_output/sldvdemo_cruise_control/sldvdemo_cruise_control_report.html

1-15

1 Getting Started

Note The log window contains the exact path name for the HTML report.

The HTML report includes the following chapters.

Each the following sections for a description of each report chapter:

• “Summary” on page 1-16

• “Analysis Information” on page 1-17

• “Test Objectives Status” on page 1-19

• “Model Items” on page 1-21

• “Test Cases” on page 1-22

Summary. In the Table of Contents, click Summary to display the
Summary chapter, which includes the following information:

• Name of the model

• Mode of the analysis (test generation or property proving)

• Status of the analysis

• Number of objectives satisfied

1-16

Analyzing a Model

Analysis Information. In the Table of Contents, click Analysis
Information to display information about the analyzed model and the
analysis options.

1-17

1 Getting Started

1-18

Analyzing a Model

Test Objectives Status. In the Table of Contents, click Test Objectives
Status to display a table of satisfied objectives. The following figure shows a
partial list of the objectives satisfied in the Cruise Control Test Generation
model.

The Objectives Satisfied table lists the following information for the model:

• # — Objective number.

• Type — Objective type.

• Model Item — Element in the model for which the objective was tested.
Click this link to display the model with this element highlighted.

• Description — Description of the objective.

• Test case — Test case that achieves the objective. Click this link to get
more information about that test case.

1-19

1 Getting Started

In the row for objective 17, click the test case number (8) to display more
information about test case 8 in the report’s Test Cases chapter.

In this example, Test Case 8 satisfies 2 model coverage objectives. The
following signal values achieve the objectives listed in the Objectives column
of the table:

• The enable signal remains 1.

• The brake signal transitions from 0 to 1 at 0.1 seconds.

1-20

Analyzing a Model

• The inc and set signals transition from 1 to 0 at 0.1 seconds.

• The dec and speed signals remain 0.

This information matches what you see in the test harness model. Specifically,
the Inputs block in the test harness depicts identical signal values for Test
Case 8, and the Test Case Explanation block lists 2 objectives that Test Case
8 achieves (see “Exploring the Test Harness” on page 1-10).

Model Items. In the Table of Contents, clickModel Items to see detailed
information about each item in the model that defines coverage objectives.
This table includes the status of the objective at the end of the analysis. Click
the links in the table to get detailed information about the satisfied objectives.

1-21

1 Getting Started

Test Cases. In the Table of Contents, click Test Cases to display detailed
information about each generated test case, including:

• Length of time to execute the test case

• Number of objectives satisfied

1-22

Analyzing a Model

• Detailed information about the satisfied objectives

• Input data

See the section for Test Case 8 in “Test Objectives Status” on page 1-19

Combining Test Cases
If you prefer to review results that are combined into a smaller number of test
cases, set the Test suite optimization parameter to Long test cases.
When you use the Long test cases optimization, the analysis generates
fewer, but longer, test cases that each satisfy multiple test objectives. This
optimization creates a more efficient analysis and easier-to-review results.

Open the sldvdemo_cruise_control model and rerun the analysis with the
Long test cases optimization:

1 Select Tools > Design Verifier > Options.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, in the Design Verifier category, select Test Generation.

3 Set the Test suite optimization parameter to Long test cases.

4 Click Apply and OK to close the Configuration Parameters dialog box.

5 In the sldvdemo_cruise_control model, double-click the block labeled
Run.

The Signal Builder dialog box now contains one test case instead of ten test
cases.

1-23

1 Getting Started

This HTML report contains one section describing Test Case 1.

1-24

Analyzing a Model

1-25

1 Getting Started

Analyzing a Subsystem
In addition to analyzing a model, you can analyze a subsystem within a
model. This technique is good for large models, where you want to review the
analysis in smaller, manageable reports.

This example analyzes the Controller subsystem in the
sldvdemo_cruise_control model from “Analyzing a Model” on
page 1-6.

1 Enter sldvdemo_cruise_control at the MATLAB command line to open
the Cruise Control Test Generation model.

2 Right-click the Controller subsystem, and select Subsystem Parameters.

3 In the Function Block Parameters dialog box, select Treat as atomic unit.

1-26

Analyzing a Subsystem

An atomic subsystem executes as a unit relative to the parent model;
subsystem block execution does not interleave with parent block execution.
This makes it possible to extract subsystems for use as standalone models.

You must set the Treat as atomic unit parameter to analyze a subsystem
with the Simulink Design Verifier software.

After you set the parameter, other options become available, but you can
ignore them.

4 Click Apply and OK to close the dialog box.

1-27

1 Getting Started

5 Select File > Save As and save the Cruise Control Test Generation model
under a new name.

6 To start the subsystem analysis and generate test cases, right-click the
Controller subsystem, and select Design Verifier > Generate Tests for
Subsystem.

7 The Simulink Design Verifier software creates and opens the following
output. Except for the new model, all of these correspond to the model
analysis output:

• A new model containing just the Controller subsystem: Controller.mdl

• Test harness model: Controller_harness.mdl

• Signal Builder dialog box containing the test-case signals

1-28

Analyzing a Subsystem

• HTML report containing the analysis results: Controller_report.htm

8 Review the results of the subsystem analysis (harness model and HTML
report) and compare them to the results of the full-model analysis described
in “Analyzing a Model” on page 1-6.

• The subsystem analysis analyzes the Controller as a standalone model.

• The Controller subsystem contains all the test objectives in the Cruise
Control Test Generation model, so both analyses generate the same
test cases.

1-29

1 Getting Started

Basic Workflow for Using the Simulink Design Verifier
Software

The Simulink Design Verifier User’s Guide is organized on the basis of
workflow that you follow when generating tests for your model or proving
its properties. This workflow is described in the following steps, which cite
locations in the documentation that you can refer to for more information:

Step Action See...

1 Check the compatibility of your model. Chapter 3, “Ensuring Compatibility with the
Simulink® Design Verifier Software”

2 Optionally, prepare your model for
analysis.

Chapter 4, “Working with Block
Replacements”

Chapter 5, “Specifying Parameter
Configurations”

3 Set Simulink Design Verifier options. Chapter 6, “Configuring Simulink® Design
Verifier Options”

4 Generate test cases for your model or
prove its properties.

Chapter 7, “Generating Test Cases”

Chapter 8, “Proving Properties of a Model”
5 Interpret the results. Chapter 9, “Reviewing the Results”

1-30

Learning More

Learning More

In this section...

“Next Step” on page 1-31
“Product Help” on page 1-31
“The MathWorks Online” on page 1-32

Next Step
To begin learning how to use the Simulink Design Verifier software, see
Chapter 3, “Ensuring Compatibility with the Simulink® Design Verifier
Software”. Also see the following topics to continue your exploration of the
software:

For... See...

Exercise that walks you through the
process of generating test cases for
a model

“Generating Test Cases for a Model”
on page 7-4

Exercise that walks you through the
process of proving a model property

“Proving Properties in a Model” on
page 8-4

Product Help
More information is available with your product installation. In the MATLAB

desktop, click for help, and then click the product name in the Contents
pane.

For... See...

List of blocks Blocks — Alphabetical List
Tutorials Examples in Documentation
More product demonstrations Simulink Design Verifier Demos
What’s new in this product Release Notes

1-31

1 Getting Started

The MathWorks Online
Point your Internet browser to the MathWorks Web site for additional
information and support at

http://www.mathworks.com/products/sldesignverifier/

1-32

http://www.mathworks.com/products/sldesignverifier/

2

How the Simulink Design
Verifier Software Works

• “Model Analysis with Simulink® Design Verifier Software” on page 2-2

• “Analyzing a Simple Model” on page 2-3

• “Analyzing Large Models” on page 2-5

• “Handling Incompatibilities with Automatic Stubbing” on page 2-6

• “Approximations” on page 2-14

2 How the Simulink® Design Verifier™ Software Works

Model Analysis with Simulink Design Verifier Software
Simulink Design Verifier software is an efficient analysis tool that explores the
simulation behavior of a model. It searches the possible values of model inputs
and block parameters to find a simulation that satisfies test objectives. The
software also proves model properties and generates examples of violations.

Such analysis always begins with the initial configuration of the model
and can span an arbitrary number of time steps. Generally, there is an
infinite number of paths through the model because the values of inputs are
independent from one time step to the next, and there is no fixed limit to the
number of time steps.

If the software finds no way to reduce the search space, it would continue
its analysis indefinitely. Thus, the software limits the analysis by tracking
the persistent information in the model such as discrete states, data-store
memories, and persistent variables.

After an analysis explores all possible inputs and parameters from all possible
configurations, the results equal those of a complete search of every possible
infinite sequence of inputs parameters.

2-2

Analyzing a Simple Model

Analyzing a Simple Model
This simple Simulink model includes two Logical Operator blocks and a
Memory block.

The persistent information in this model is limited to the Boolean value of
the Memory block. The input to the model is a single Boolean value. The
following table describes the complete behavior of the model, including the
behavior that would result from an arbitrarily long sequence of inputs.

Input Memory
Value

Output of XOR
Block = Next
Memory Value

Output of AND
Block

1 false false false false
2 true false true false
3 false true true false
4 true true false true

Suppose you want to generate test cases that result in a true output; this goal
is your test objective. If you run the Simulink Design Verifier software to
generate test cases that result in a true output, the software searches this
table to see if such a scenario is possible.

After the Simulink Design Verifier software discovers a configuration that
satisfies the test objective (in this case, when both the input and the Memory
block output are true), it needs to find a path to reach this configuration from

2-3

2 How the Simulink® Design Verifier™ Software Works

the initial conditions. If the initial memory value is true, the test case only
needs to be a single time step (row 4) where the input was true.

If the initial memory value is false (the default), the test case must force the
memory value to be true. In this example, the path requires two steps:

1 The input value is true and the memory value is false (row 2). Thus, the
output of the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the
output is true, so the analysis achieves the specified test objective.

An infinite number of test cases can cause the output to be true, and
regardless of the state value, the output can be held false for an arbitrary time
before making it true. When the Simulink Design Verifier software searches,
it returns the first test case it encounters that satisfies the objective. This
case is invariably the simulation with the fewest time steps. Sometimes you
may find this result undesirable because it is unrealistic or does not satisfy
some other test requirement.

The same basic principles from this example apply to property proving and
test case generation. During test case generation, option parameters explicitly
specify the search criteria. For example, you can specify that Simulink Design
Verifier software find paths for all outputs or find only those paths that make
where the output is true.

During property proving, you specify a functional requirement, or property,
that you want the Simulink Design Verifier software to prove, for example,
that the output is always true. If the search completes without finding
a path that violates the property, the proof of that property completes
successfully. If the software finds a path where the output is false, it creates a
counterexample that causes the output to be false.

2-4

Analyzing Large Models

Analyzing Large Models
In larger, more complicated models, the Simulink Design Verifier software
uses mathematical techniques to simplify the analysis:

• It identifies portions of the model that do not affect the desired objectives.

• It discovers relationships within the model that reduce the complexity of
the search.

• It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that
describe your model.

For detailed information about analyzing large models, see Chapter 10,
“Analyzing Large Models and Improving Performance”.

2-5

2 How the Simulink® Design Verifier™ Software Works

Handling Incompatibilities with Automatic Stubbing

In this section...

“What Is Automatic Stubbing?” on page 2-6
“Analyzing a Model Using Automatic Stubbing” on page 2-6

What Is Automatic Stubbing?
Automatic stubbing allows you to run a test case generation or
property-proving analysis on a model that contains elements that the
Simulink Design Verifier software does not support.

When you enable automatic stubbing option, the software considers only
the interface of the unsupported elements, not their actual behavior. This
technique allows the software to complete the analysis. However, the analysis
may achieve only partial results if any of the unsupported model elements
affect the simulation outcome.

Analyzing a Model Using Automatic Stubbing
This section describes a workflow for using automatic stubbing, using a simple
Simulink model (t1) as an example.

• “Checking Model Compatibility” on page 2-7

• “Turning On Automatic Stubbing” on page 2-10

• “Reviewing the Results” on page 2-12

• “Achieving Complete Results” on page 2-13

The t1 model contains a Trigonometric Function block, which is not
compatible with the Simulink Design Verifier software.

2-6

Handling Incompatibilities with Automatic Stubbing

Checking Model Compatibility
From the Model Editor, there are two ways to check whether a model is
compatible with the Simulink Design Verifier software:

• Run the Simulink Design Verifier compatibility check by selecting
Tools > Design Verifier > Check Model Compatibility.

2-7

2 How the Simulink® Design Verifier™ Software Works

• Select the analysis that you want:

- Tools > Design Verifier > Generate Tests

- Tools > Design Verifier > Prove Properties

The software first checks the compatibility of the model. If the model itself
is incompatible, for example, if it uses a variable-step solver, the analysis
cannot continue.

If it finds incompatible elements in the model, the software stops and asks
if you want to turn on automatic stubbing.

2-8

Handling Incompatibilities with Automatic Stubbing

You can:

- Save the log file.

- Continue the analysis.

- Terminate the analysis.

2-9

2 How the Simulink® Design Verifier™ Software Works

The Simulation Diagnostics Viewer is also displayed, listing the
incompatibilities. (For more information about this dialog box, see
“Simulation Diagnostics Viewer” in the Simulink User’s Guide.)

Turning On Automatic Stubbing
There are two ways to turn on automatic stubbing:

• If you have not turned on automatic stubbing and the analysis finds at
least one incompatibility, the analysis stops and asks if you want to turn on
automatic stubbing. Click Continue to proceed with the analysis.

2-10

Handling Incompatibilities with Automatic Stubbing

• Before starting the analysis, in the Configuration Parameters dialog
box, on the main Design Verifier pane, select Automatic stubbing of
unsupported block and functions. When you run the analysis, you are
notified that stubbing is turned on and the analysis continues.

2-11

2 How the Simulink® Design Verifier™ Software Works

Reviewing the Results
If you ran the analysis with automatic stubbing enabled, make sure to review
the results. In this report, you see a table of unsupported blocks that the
software encountered.

The Summary report for the t1 example model shows that one objective was
satisfied without generating a test case. The software cannot generate the
test case because it does not understand the operation of the Trigonometric
Function block.

2-12

Handling Incompatibilities with Automatic Stubbing

Achieving Complete Results
If your analysis does not achieve complete results because of the stubbing,
you can define custom block replacements to give a more precise definition
of the unsupported blocks. For more information:

• “Defining Custom Block Replacements” on page 4-7.

• Enter

echodemo sldvdemo_blockreplacement_unsupportedblocks

to step through the “Block Replacements for Unsupported Models” demo.

2-13

2 How the Simulink® Design Verifier™ Software Works

Approximations

In this section...

“Approximations During Model Analysis” on page 2-14
“Types of Approximations” on page 2-14
“Converting Floating-Point Arithmetic to Rational-Number Arithmetic ”
on page 2-14
“Linearizing 2-D Lookup Tables” on page 2-15
“Unrolling While Loops” on page 2-15
“Ensuring the Validity of the Analysis” on page 2-15

Approximations During Model Analysis
The Simulink Design Verifier software attempts to generate inputs and
parameters to achieve test and proof objectives. However, there could be an
infinite number of values for the software to search. To create reasonable
limits on the analysis, the software performs approximations to simplify
the analysis. The software records any approximations it performed in the
Analysis Information chapter of the Simulink Design Verifier HTML report.

Types of Approximations
Simulink Design Verifier software performs three types of approximations
when it analyzes a model:

• “Converting Floating-Point Arithmetic to Rational-Number Arithmetic ”
on page 2-14

• “Linearizing 2-D Lookup Tables” on page 2-15

• “Unrolling While Loops” on page 2-15

Converting Floating-Point Arithmetic to
Rational-Number Arithmetic
The Simulink Design Verifier software simplifies the linear arithmetic of
floating-point numbers by approximating them with infinite-precision rational
numbers. The software discovers how the logical relationships between

2-14

Approximations

these values affects the proof and test objectives. This analysis enables the
software to support supervisory logic that is commonly found in embedded
controls designs.

If your model contains floating-point values in the signals, input values, or
block parameters, the Simulink Design Verifier software converts those
values to rational numbers before performing its analysis.

Note As a result of these approximations, Simulink Design Verifier software
does not consider the effect of round-off error, or the upper and lower bounds
of floating-point numbers.

Linearizing 2-D Lookup Tables
The Simulink Design Verifier software does not support nonlinear arithmetic.
If your model contains any Lookup Table (2-D) blocks, the software
approximates nonlinear 2-D interpolation with linear interpolation by fitting
planes to each interpolation interval, if necessary.

Unrolling While Loops
If your model or any Stateflow chart in your model contains a while loop, the
Simulink Design Verifier software tries to find a bound that allows the while
loop to exit. To find a bound, it unrolls the while loop and executes it three
times. If the software does not find a bound for a test case generation analysis,
it sets the number of loop iterations to three for the purpose of the analysis. If
you are performing a property-proving analysis, the analysis terminates.

Ensuring the Validity of the Analysis
The Simulink Design Verifier software records all approximations it
performed in the Analysis Information chapter of the HTML report. (For a
description of the contents of this chapter, see “Analysis Information Chapter”
on page 9-20.)

Review the analysis results carefully when the software uses approximations.
Evaluate your model to identify which blocks or subsystems caused the
software to perform the approximations.

2-15

2 How the Simulink® Design Verifier™ Software Works

In rare cases, an approximation can result in test cases that fail to achieve
test objectives, or counterexamples that fail to falsify proof objectives. For
example, suppose the software generates a test case signal that should
achieve an objective by exceeding a threshold; a floating-point round-off error
might prevent that signal from attaining the threshold value.

2-16

3

Ensuring Compatibility
with the Simulink Design
Verifier Software

The Simulink Design Verifier software supports a broad range of Simulink
and Stateflow software features. However, there are features that the product
does not support. Therefore, you must avoid using particular features in
models that you plan to analyze with the Simulink Design Verifier software.
The following sections identify the unsupported features and describe how
to check whether your model is compatible for use with the Simulink Design
Verifier software.

• “Checking Model Compatibility” on page 3-2

• “Unsupported Simulink Software Features” on page 3-8

• “Unsupported Stateflow Software Features” on page 3-12

• “Support Limitations for the Embedded MATLAB Subset” on page 3-14

• “Fixed-Point Support Limitations” on page 3-17

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Checking Model Compatibility
The Simulink Design Verifier software automatically checks the compatibility
of your model before it begins the analysis.

In addition, the software runs the same check before analyzing the
model. To run this check, in the model window, select Tools > Design
Verifier > Check Model Compatibility.

3-2

Checking Model Compatibility

Alternatively, you can use the sldvcompat function to run the compatibility
checker programmatically at the command line or in an M-file program. For
more information, see the sldvcompat reference page.

There are three outcomes of a compatibility check:

• “Model Is Compatible” on page 3-3

• “Model Is Incompatible” on page 3-4

• “Some Model Elements Are Incompatible” on page 3-5

Model Is Compatible
In the log window, you see if your model is compatible with the Simulink
Design Verifier software.

3-3

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Model Is Incompatible
If the model itself is incompatible with the software, for example, if it uses
a variable-step solver, you see two dialog boxes:

• Simulink Design Verifier log

• Simulation Diagnostics Viewer. Use the information in this dialog box to
identify and correct the incompatibility.

3-4

Checking Model Compatibility

Note For more information about this dialog box, see “Simulation
Diagnostics Viewer” in the Simulink User’s Guide.

Some Model Elements Are Incompatible
If at least one element in the model is incompatible, you see a notification in
the Simulink Design Verifier log window. If you have turned on automatic
stubbing, the analysis proceeds.

3-5

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

If you have not turned on automatic stubbing, the analysis stops. You see a
query asking if you want to turn it on so that the analysis can proceed.

3-6

Checking Model Compatibility

Note For instructions on how to use automatic stubbing, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-6.

3-7

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Unsupported Simulink Software Features

In this section...

“Simulink Software Features Not Supported” on page 3-8
“Simulink Block Support Limitations” on page 3-9

Simulink Software Features Not Supported
The Simulink Design Verifier software does not support the following
Simulink software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Not Supported Description

Variable-step solvers The Simulink Design Verifier software supports
only fixed-step solvers. (See “Choosing a Fixed-Step
Solver” in the Simulink User’s Guide.)

Complex signals The Simulink Design Verifier software supports
only real signals. (For contrast, see “Complex
Signals” in the Simulink User’s Guide.)

Enumerated data types The Simulink Design Verifier software does not
support enumerated data types.

Multiword fixed-point data types The Simulink Design Verifier software does not
support multiword fixed-point data types.

3-8

Unsupported Simulink® Software Features

Not Supported Description

Signals with nonzero sample time offset The Simulink Design Verifier software does not
support models with signals that have nonzero
sample time offsets.

Nonzero start times Although Simulink allows you to specify a nonzero
simulation start time, the Simulink Design Verifier
software generates signal data that begins only at
zero. If your model specifies a nonzero start time:

• If you do not select the Reference input model
in generated harness parameter (the default),
the harness model is a subsystem. The software
sets the start time of the harness model to 1 and
continues the analysis.

• If you select the Reference input model in
generated harness parameter, a Model block
references the harness model. The Simulink
Design Verifier software cannot change the start
time of the harness model, so the analysis stops
and you see a recommendation to set the Start
time parameter to 0.

Simulink Block Support Limitations
The Simulink Design Verifier software provides various levels of support for
Simulink blocks. The software either fully or partially supports particular
blocks. It does not support other blocks.

If your model contains unsupported blocks, you can turn on automatic
stubbing, which considers the interface of the unsupported blocks, but
not their behavior. However, if any of the unsupported blocks affect the
simulation outcome, the analysis may achieve only partial results. For details
about automatic stubbing, see “Handling Incompatibilities with Automatic
Stubbing” on page 2-6.

To guarantee 100% coverage, avoid using unsupported blocks in models that
you analyze with the Simulink Design Verifier software.

3-9

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Similarly, specify only the block parameters that the Simulink Design Verifier
software recognizes for blocks that it partially supports. See Chapter 14,
“Simulink Block Support”.

Limitations of Support for Model Reference
The Simulink Design Verifier software supports the Model block, but with
the following limitations. The software cannot analyze a model that contains
one or more Model blocks if:

• The parent model or any of the referenced models gives an error when one
of the following model parameters is set to Error:

- Diagnostics > Connectivity > Element name mismatch

- Diagnostics > Connectivity > Mux blocks used to create bus
signals

You can use the Element name mismatch diagnostic along with bus
objects to ensure that your model meets bus element naming requirements
imposed by some blocks.

If your model contains Mux blocks that create bus signals, refer to “Tips” in
“Mux blocks used to create bus signals” to resolve this problem.

• A referenced model references a variable in its workspace that is either
defined in its own workspace or in the base MATLAB workspace, and it is
also defined with the same name in the parent model’s workspace. Rename
the variable used by the referenced model to a unique name so that you
can analyze the model.

Exception: If the parent model and a referenced model both define an
instance of a Simulink.Signal object used as local data storage with the
same name, the software can analyze the model.

• Any of the models in the model reference hierarchy have algebraic loops
that cannot be eliminated with algebraic loop minimization. If you
encounter this limitation, set the Minimize algebraic loop parameter
on the Diagnostics pane of the Configuration Parameters dialog box to
Error. Then, update the model to identify the location of algebraic loop
in the model.

3-10

Unsupported Simulink® Software Features

To eliminate this problem so that the software can analyze the model,
break any algebraic loops with Unit Delay blocks to ensure that the
execution order is predictable.

For more information, see “Algebraic Loops” in the Simulink User’s Guide.

3-11

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Unsupported Stateflow Software Features
The Simulink Design Verifier software does not support the following
Stateflow software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Not Supported Description

ml namespace operator,
ml function, ml
expressions

The Simulink Design Verifier software does not
support calls to MATLAB functions or access
to MATLAB workspace variables, which the
Stateflow software allows (see “Using MATLAB
Functions and Data in Actions” in the Stateflow
and Stateflow® Coder™ User’s Guide).

C math functions The Simulink Design Verifier software supports
calls to the following C math functions: abs,
ceil, fabs, floor, fmod, labs, ldexp, and pow
(only for an integer exponent).

The software does not support calls to other
C math functions that the Stateflow software
allows. Turning on automatic stubbing allows
these functions to be eliminated during the
analysis. For details about automatic stubbing,
see “Handling Incompatibilities with Automatic
Stubbing” on page 2-6.

For information about C math functions in
Stateflow, see “Calling C Functions in Actions”
in the Stateflow and Stateflow Coder User’s
Guide)

3-12

Unsupported Stateflow® Software Features

Not Supported Description

Recursion The Simulink Design Verifier software does
not support recursive functions, which the
Stateflow software allows you to implement
using graphical functions (see “Using Graphical
Functions to Extend Actions” in the Stateflow
and Stateflow Coder User’s Guide). Also, the
Simulink Design Verifier software does not
support recursion that the Stateflow software
allows you to implement using a combination of
event broadcasts and function calls.

Custom C or C++ code The Simulink Design Verifier software does
not support custom C or C++ code, which
the Stateflow software allows (see “Building
Targets” in the Stateflow and Stateflow Coder
User’s Guide).

Machine-parented data
and events

The Simulink Design Verifier software does
not support machine-parented data and events
(i.e., defined at the level of the Stateflow
machine in the Stateflow hierarchy), which the
Stateflow software allows (see “Defining Data”
and “Defining Events” in the Stateflow and
Stateflow Coder User’s Guide).

Absolute-time temporal
logic

The Simulink Design Verifier software does not
support absolute-time temporal logic, which the
Stateflow software allows (see “Operators for
Absolute-Time Temporal Logic” in the Stateflow
and Stateflow Coder User’s Guide).

3-13

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Support Limitations for the Embedded MATLAB Subset

In this section...

“Unsupported Embedded MATLAB Subset Features” on page 3-14
“Limitations of Embedded MATLAB Library Function Support” on page
3-15

Unsupported Embedded MATLAB Subset Features
The Simulink Design Verifier software does not support the following features
of the Embedded MATLAB™ Function block in the Simulink software and
Embedded MATLAB functions in the Stateflow software. Avoid using these
unsupported features in models that you analyze with the Simulink Design
Verifier software.

Not Supported Description

Complex numbers The Simulink Design Verifier software supports
only real numbers. The Embedded MATLAB
subset also supports complex numbers.

For more information, see “Working with
Complex Numbers” in the Embedded
MATLAB™ User’s Guide.

Characters The Simulink Design Verifier software does
not support characters, which the Embedded
MATLAB subset allows.

For more information, see “Working with
Characters” in the Embedded MATLAB™
User’s Guide.

3-14

Support Limitations for the Embedded MATLAB™ Subset

Not Supported Description

C functions The Simulink Design Verifier software does not
support calls to external C functions, which the
Embedded MATLAB subset allows.

For more information about the Embedded
MATLAB subset, see“Calling C Functions
from the Embedded MATLAB Subset” in the
Embedded MATLAB™ User’s Guide.

Extrinsic functions The Simulink Design Verifier software supports
extrinsic functions only when they do not affect
the output of an Embedded MATLAB function.

For more information about calling extrinsic
functions, see “Calling MATLAB Functions” in
the Embedded MATLAB™ User’s Guide.

Limitations of Embedded MATLAB Library Function
Support
The Simulink Design Verifier software provides various levels of support for
Embedded MATLAB library functions. The software either fully or partially
supports particular functions. It does not support other functions.

If your model contains unsupported functions, you can turn on automatic
stubbing, which considers the interface of the unsupported functions, but
not their behavior. However, if any of the unsupported functions affect the
simulation outcome, the analysis may achieve only partial results. For details
about automatic stubbing, see “Handling Incompatibilities with Automatic
Stubbing” on page 2-6.

To guarantee 100% coverage, avoid using unsupported Embedded MATLAB
library functions in models that you analyze with the Simulink Design
Verifier software.

Avoid using unsupported Embedded MATLAB library functions in models
that you analyze with the Simulink Design Verifier software. See Chapter 15,
“Embedded MATLAB Subset Support” for a list of the Embedded MATLAB

3-15

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

library functions for which the Simulink Design Verifier software provides
limited or no support.

3-16

Fixed-Point Support Limitations

Fixed-Point Support Limitations
The Simulink Design Verifier software supports fixed-point data types in
models that it analyzes, with one exception. Parameter configurations do
not support fixed-point data types. For more information about configuring
Simulink Design Verifier parameters, see Chapter 5, “Specifying Parameter
Configurations”.

For detailed information about these limitations, see “Tunable Expression
Limitations” in the Real-Time Workshop® User’s Guide.

3-17

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-18

4

Working with Block
Replacements

With the Simulink Design Verifier software, you can define rules to replace
blocks automatically in your model. For example, you can work around a
block that is incompatible with the software by creating a rule that replaces
an unsupported Simulink block in your model with a supported block that is
functionally equivalent. Or, you can customize blocks for analysis by creating
a rule that adds constraints or objectives to particular blocks in your model.
The following sections introduce block replacements and illustrate a process
for writing block replacement rules.

• “About Block Replacements” on page 4-2

• “Built-In Block Replacements” on page 4-3

• “Template for Block Replacement Rules” on page 4-6

• “Defining Custom Block Replacements” on page 4-7

• “Executing Block Replacements” on page 4-15

4 Working with Block Replacements

About Block Replacements
The Simulink Design Verifier software can perform automatic block
replacements in a model. It can replace instances of a particular block in your
model with an entirely different block from an existing library or from a block
library that you create. When performing block replacements, the software
copies your model and replaces blocks in the copy, without altering your
original model. In this way, you can easily customize a model for analysis.

The Simulink Design Verifier software replaces blocks automatically in a
model using:

• Libraries of replacement blocks

• Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries
of replacement blocks and custom block replacement rules. Use this capability
if you need to:

• Work around an incompatibility, such as the presence of unsupported
blocks in your model.

• Customize a block for analysis, such as adding constraints to its input
signals, objectives to its output signals, or eliminating the contents of a
subsystem or Model block to simplify your analysis.

Note You can use automatic stubbing as an alternative to block
replacements. Automatic stubbing replaces unsupported blocks with
elements that have the same interface. For more information, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-6.

4-2

Built-In Block Replacements

Built-In Block Replacements
The Simulink Design Verifier software provides a set of block replacement
rules and a corresponding library of replacement blocks. Use these built-in
block replacements when analyzing models. They serve as examples that you
can examine to learn how to create your own block replacements.

The following table lists the factory default block replacement rules, available
in the matlabroot\toolbox\sldv\sldv\private directory. There are two
implementations of each factory default block replacement rule. Rules whose
file names end with _normal.m replace blocks with Subsystem blocks. Rules
whose file names end with _configss.m replace blocks with Configurable
Subsystem blocks.

File Name Description

blkrep_rule_lookup_normal.m

blkrep_rule_lookup_configss.m

A rule that replaces Lookup Table blocks with
an implementation that includes test objectives
for each breakpoint and interval specified by the
Vector of input values parameter.

blkrep_rule_lookup2D_normal.m

blkrep_rule_lookup2D_configss.m

A rule that adds Test Condition/Proof Assumption
blocks to the input ports of Lookup Table (2-D)
blocks. Each Test Condition/Proof Assumption
block constrains signal values to the interval
specified by the corresponding breakpoint vector.

blkrep_rule_mpswitch2_normal.m

blkrep_rule_mpswitch2_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 2. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 2] (or [0, 1] if the block uses zero-based
indexing).

4-3

4 Working with Block Replacements

File Name Description

blkrep_rule_mpswitch3_normal.m

blkrep_rule_mpswitch3_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 3. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 3] (or [0, 2] if the block uses zero-based
indexing).

blkrep_rule_mpswitch4_normal.m

blkrep_rule_mpswitch4_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 4. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 4] (or [0, 3] if the block uses zero-based
indexing).

blkrep_rule_mpswitch5_normal.m

blkrep_rule_mpswitch5_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 5. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 5] (or [0, 4] if the block uses zero-based
indexing).

blkrep_rule_switch_normal.m

blkrep_rule_switch_configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring that each switch position be exercised
when the values of the first and third input ports
are different.

4-4

Built-In Block Replacements

File Name Description

blkrep_rule_selector
IndexVecPort_normal.m

blkrep_rule_selector
IndexVecPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter is Index
vector (port). The Test Condition/Proof
Assumption block constrains signal values to an
interval whose endpoints are derived from the
values of the Selector block’s Input port size and
Index mode parameters.

blkrep_rule_selector
StartingIdxPort_normal.m

blkrep_rule_selector
StartingIdxPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter
is Starting index (port). The Test
Condition/Proof Assumption block constrains
signal values to an interval whose endpoints are
derived from the values of the Selector block’s
Input port size, Output size, and Index mode
parameters.

You can find the library of replacement blocks that corresponds to the factory
default rules at:

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib.mdl

4-5

4 Working with Block Replacements

Template for Block Replacement Rules
To help you create block replacement rules, the Simulink Design Verifier
software provides an annotated M-file template that contains a skeleton
implementation of the requisite callbacks. You can find the template at:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit
the copy for the behavior that you want for the rule you are creating. For
information on how to implement your rule, see the comments in the template.
For information on using the template to write custom block replacements
rules, see “Writing Block Replacement Rules” on page 4-10.

4-6

Defining Custom Block Replacements

Defining Custom Block Replacements

In this section...

“About Custom Block Replacements” on page 4-7
“Specifying Replacement Blocks” on page 4-7
“Writing Block Replacement Rules” on page 4-10

About Custom Block Replacements
Defining custom block replacements in the Simulink Design Verifier software
consists of the following tasks:

• “Specifying Replacement Blocks” on page 4-7

• “Writing Block Replacement Rules” on page 4-10

Specifying Replacement Blocks
A replacement block can be one of the built-in blocks in the Simulink model
library or a block in a user-created library.

In the Simulink Design Verifier software, replacement blocks have the
following restrictions:

• They must be built-in blocks or subsystems.

• They cannot be Model blocks, nor can they include any Model blocks.

Note A Model block cannot be a replacement block, but you can replace
Model blocks with built-in blocks or subsystems.

• They must reside in a block library that is available on your MATLAB
search path.

• If the replacement block is a subsystem, it must contain Inport and Outport
blocks that have the default names (In1 and Out1).

4-7

4 Working with Block Replacements

To create a user library and specify a replacement block as a masked
subsystem:

1 In the Simulink Library Browser, select File > New > Library.

2 In your library, create a subsystem named myReplacementBlock to
represent your replacement block. It should look like the following graphic,
with several parameters set:

• In the Multiport Switch block, set the Number of inputs parameter
to 2.

• In the Test Condition block, set the Values parameter to {[1, 2]}.

4-8

Defining Custom Block Replacements

3 To create a mask for your subsystem, select the subsystem, right-click,
and selectMask subsystem from the context menu. For information and
a tutorial for creating block masks, see “Working with Block Masks” in
the Simulink User’s Guide.

For this example, the masked subsystem includes the following
specifications in its Mask Editor:

• The Parameters pane defines a mask parameter named InputSameDT,
which replicates the behavior of the Require all data port inputs
to have the same data type parameter of the underlying Multiport
Switch block.

4-9

4 Working with Block Replacements

Note When you create mask parameters that control the behavior
of parameters associated with their underlying blocks, specify actual
parameter names as dialog box variables in the Mask Editor. For
instance, InputSameDT is the actual parameter name that controls the
Require all data port inputs to have the same data type parameter
of the Multiport Switch block; therefore, it specifies the name of the
dialog box variable in this example.

• In the Initialization pane, in the Initialization commands field,
you see the following commands:

maskInputSameDT = get_param(gcb,'InputSameDT');
blkName = sprintf('/Multiport\nSwitch');
targetBlock = [gcb, blkName];
set_param(targetBlock,'InputSameDT',maskInputSameDT);

4 Save your block library as custom_rule.mdl in a directory on your
MATLAB search path.

After constructing your replacement block, you can write a custom block
replacement rule.

Writing Block Replacement Rules
In the Simulink Design Verifier software, block replacement rules have the
following restrictions:

• The M-file that represents a block replacement rule must include particular
callbacks. The MathWorks recommends that you use the block replacement
rule template as a starting point for writing a custom rule. (See “Template
for Block Replacement Rules” on page 4-6.)

• The M-file that represents a block replacement rule must be on the
MATLAB search path.

• You cannot create a rule that replaces Inport, Outport, or Subsystem
blocks in your model.

To write a rule for the replacement block:

4-10

Defining Custom Block Replacements

1 Copy the block replacement rule template

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

2 Save it as custom_rule_switch.m.

Note For steps 2 through 10, edit the copy of the template that you saved.

3 Rename the function, as defined on the first line of the M-file. The function
name must match its file name, without the .m extension. Optionally, you
can edit the comments that follow the function declaration to create your
own M-file help for this rule.

In this example, the first few lines of custom_rule_switch.m declare the
function and its M-file help:

function rule = custom_rule_switch
%CUSTOM_RULE_SWITCH Custom block replacement rule for
%the Simulink Design Verifier software
%
% This block replacement rule identifies Multiport
% Switch blocks whose "Number of inputs" parameter
% specifies '2' and "Use zero-based indexing" parameter
% specifies 'off'. It replaces such blocks with an
% implementation that includes a Test Condition block
% on the control input signal.

4 Identify the type of block that you want to replace in your model by
specifying its BlockType parameter as the rule.blockType object.
Consider using the get_param function to obtain the value of the BlockType
parameter for the block that you want to replace. Alternatively, you can
determine this value by referring to “Block-Specific Parameters” in the
Simulink Reference.

This example replaces Multiport Switch blocks. The rule.blockType
object specifies the appropriate BlockType parameter:

%% Target Block Type
%

4-11

4 Working with Block Replacements

rule.BlockType = 'MultiPortSwitch';

5 Identify the replacement block by specifying its full block path name as
the rule.ReplacementPath object. Consider using the gcb function as a
way to get the full block path name.

This example replaces Multiport Switch blocks with the replacement
block developed in “Specifying Replacement Blocks” on page 4-7. The
rule.ReplacementPath object specifies the full block path name:

%% Replacement Library
%
rule.ReplacementPath = sprintf('custom_rule/myReplacementBlock');

6 Identify the type of subsystem that the Simulink Design Verifier
software uses when replacing blocks by specifying a value for the
rule.ReplacementMode object. Valid values are:

• Normal—When using this rule, the software replaces blocks with a copy
of the subsystem specified by the rule.ReplacementPath object.

• ConfigurableSubSystem—When using this rule, the software replaces
blocks with a Configurable Subsystem block. With the Configurable
Subsystem block, you can choose whether it represents the subsystem
specified by the rule.ReplacementPath object, or the original block
before its replacement.

This example replaces Multiport Switch blocks with an ordinary Subsystem
block:

%% Replacement Mode
%
rule.ReplacementMode = 'Normal';

7 Identify parameter values that the replacement blocks inherit from the
blocks being replaced. You achieve inheritance by mapping the parameter
names in a structure. Each field of the structure represents a parameter
that the replacement block inherits. Specify the value of each field
using the token $original.parameter$. parameter is the name of the
parameter that belongs to the original block. You can determine block
parameter names by referring to “Model and Block Parameters” in the
Simulink Reference.

4-12

Defining Custom Block Replacements

The following example defines a structure named parameter that maps the
InputSameDT parameter from the original Multiport Switch blocks to their
replacement blocks:

%% Parameter Handling
%
parameter.InputSameDT = '$original.InputSameDT$';

% Register the parameter mapping for the rule
rule.ParameterMap = parameter;

8 To define the callback functions, keep the following lines in the file:

rule.IsReplaceableCallBack = @replacementTestFunction;
.
.
.
rule.PostReplacementCallBack = @postReplacementFunction;

9 Customize the replacementTestFunction subfunction by specifying
conditions under which the Simulink Design Verifier software replaces
blocks in your model.

The following example instructs the Simulink Design Verifier software to
replace only the Multiport Switch blocks whose NumInputPorts parameter
is 2 and whose zeroidx parameter is off:

function out = replacementTestFunction(blockH)
% Specify the logic that determines when the Simulink Design
% Verifier software replaces a block in your model. For example,
% restrict replacements to only the blocks whose parameters
% specify particular values.
out = false;
numInputPorts = eval(get_param(blockH,'NumInputPorts'));
zeroIdx = eval(get_param(blockH,'zeroidx'));
if numInputPorts==2 && zeroIdx=='off',

out = true;
end

10 Optionally, you can customize the postReplacementFunction subfunction
to specify the actions the software performs after a block has been replaced.

4-13

4 Working with Block Replacements

For an example of a postReplacementFunction subfunction, open the
following file:

matlabroot/toolbox/sldv/sldv/blkrep_rule_selectorIndexVecPort_normal.m

11 Save the edited M-file.

After constructing a replacement block and writing its corresponding block
replacement rule, you can execute your custom block replacement.

4-14

Executing Block Replacements

Executing Block Replacements

In this section...

“Configuring Block Replacements” on page 4-15
“Replacing Blocks in a Model” on page 4-16

Configuring Block Replacements
You must configure block replacement options before executing block
replacements in your model. To specify block replacement options from the
model window:

1 Open the sldvdemo_cruise_control model.

2 Save a copy of this model and name it my_sldvdemo_cruise_control.

3 From the Tools menu of your Simulink model, select Design
Verifier > Options.

The Configuration Parameters dialog box displays the main pane of the
Design Verifier category.

4 In the Select tree of the Configuration Parameters dialog box, click the
Block Replacements category.

5 On the Block Replacements pane, select Apply block replacements to
enable block replacements.

Enabling this option provides access to the List of block replacement
rules (in order of priority) and File path of the output model options.

6 In the List of block replacement rules (in order of priority) box, enter
file names for the block replacement rules that you want to execute. The
default value, <FactoryDefaultRules>, executes all the factory default
rules.

You can specify multiple rules as a list delimited by spaces, commas, or
carriage returns. The software executes the rules in the order that you list
them. For example, to execute two of the factory default rules followed

4-15

4 Working with Block Replacements

by the custom block replacement example from “Defining Custom Block
Replacements” on page 4-7, enter the following file names:

blkrep_rule_mpswitch4_normal
blkrep_rule_lookup_normal
custom_rule_switch

Note The Simulink Design Verifier software replaces a block in your
model only once. If multiple rules apply to the same block, the software
replaces the block using the rule with the highest priority.

7 After applying the block replacement rules, in the File path of the output
model box, enter a file name for the model that results. Optionally,
include a path that is either absolute or relative to the path in the Output
directory on the main Design Verifier pane.

8 Click OK to apply the changes and close the Configuration Parameters
dialog box.

9 Save the my_sldvdemo_cruise_control model.

Alternatively, at the command line, you can use the sldvoptions function
to specify the block replacement options associated with a Simulink Design
Verifier options object, described in “Replacing Blocks in a Model” on page
4-16.

Replacing Blocks in a Model
After enabling the Apply block replacements option, you can execute block
replacements in your model by starting a Simulink Design Verifier analysis.
For example, to trigger block replacements and start the analysis from the
Configuration Parameters dialog box, on the Design Verifier pane, click
Generate Test Cases.

Note The Simulink Design Verifier software can execute block replacements
only on models that do not have any saved changes.

4-16

Executing Block Replacements

When you are replacing blocks, the Simulink Design Verifier software copies
your model and replaces blocks in the copy, without altering your original
model. Upon completing its analysis, the software generates a report that
displays information about the block replacements it executed.

When you enable block replacements and start the analysis, the software
invokes the sldvblockreplacement command to copy the model and perform
the block replacements, before continuing the analysis.

Alternatively, to perform only the block replacements, at the command line or
from an M-file program, you can use the sldvblockreplacement function.
You pass a handle to the model and the sldvoptions structure as follows:

opts = sldvoptions;
opts.BlockReplacement = 'on'
opts.BlockReplacementRulesList = ...
'<FactoryDefaultRules>, custom_rule_switch';
[status, newmodelH] = sldvblockreplacement('modelH', opts);

modelH is a handle to the model whose blocks you want to replace. newmodelH
is the handle to the new model with the block replacements.

Replacing the blocks in a model before running the analysis can help you
debug the custom block replacement rules. Once the block replacement rules
are working as you want, you can analyze the model that contains the block
replacements.

See sldvblockreplacement for more information.

If you execute block replacements programmatically, in the MATLAB
Command Window, the Simulink Design Verifier software displays a table
that lists available block replacement rules.

Configuration of available block replacement rules:

Type: Registration M-File name: Block types: Priority: Active:

Built-in blkrep_rule_mpswitch2_normal.m MultiPortSwitch 5 0

Built-in blkrep_rule_mpswitch2_configss.m MultiPortSwitch 4 0

Built-in blkrep_rule_mpswitch3_normal.m MultiPortSwitch 3 0

Built-in blkrep_rule_mpswitch3_configss.m MultiPortSwitch 6 0

Built-in blkrep_rule_mpswitch4_normal.m MultiPortSwitch 1 1

4-17

4 Working with Block Replacements

Built-in blkrep_rule_mpswitch4_configss.m MultiPortSwitch 7 0

Built-in blkrep_rule_mpswitch5_normal.m MultiPortSwitch 2 0

Built-in blkrep_rule_mpswitch5_configss.m MultiPortSwitch 8 0

Built-in blkrep_rule_lookup_normal.m Lookup 1 1

Built-in blkrep_rule_lookup_configss.m Lookup 2 0

Built-in blkrep_rule_switch_normal.m Switch 1 0

Built-in blkrep_rule_switch_configss.m Switch 2 0

Built-in blkrep_rule_lookup2D_normal.m Lookup2D 1 0

Built-in blkrep_rule_lookup2D_configss.m Lookup2D 2 0

Built-in blkrep_rule_selectorIndexVecPort_normal.m Selector 1 0

Built-in blkrep_rule_selectorIndexVecPort_configss.m Selector 2 0

Built-in blkrep_rule_selectorStartingIdxPort_normal.m Selector 3 0

Built-in blkrep_rule_selectorStartingIdxPort_configss.m Selector 4 0

Custom custom_rule_switch.m MultiPortSwitch 2 1

The list of available block replacement rules includes all built-in rules and any
custom rules that you specified using the List of block replacement rules
(in order of priority) option (see “Configuring Block Replacements” on page
4-15). The columns of the preceding table identify the following information:

• Type — Type of rule, either built-in or custom

• Registration M-File name — Name of the M-file that expresses the rule

• Block types — BlockType parameter value of the block that the rule
replaces

• Priority — Priority of execution when multiple rules target the same type
of block for replacement

• Active — a flag that indicates whether the rule is active (1) or ignored (0)

The Simulink Design Verifier software also displays information about the
block replacements. For example, the following message indicates that the
software used the custom_rule_switch.m rule to replace a Multiport Switch
block (of the same name) at the top level of the model:

Performed block replacements:

Replacement rule M-file name: Replaced block:
custom_rule_switch.m ./Multiport Switch

4-18

5

Specifying Parameter
Configurations

The Simulink Design Verifier software allows you to treat block parameters
in your model as variables in its analysis. The following sections introduce
parameter configurations and show how you specify constraints on block
parameters.

• “About Parameter Configurations” on page 5-2

• “Template for Parameter Configurations” on page 5-3

• “Defining Parameter Configurations” on page 5-4

• “Parameter Configuration Example” on page 5-7

5 Specifying Parameter Configurations

About Parameter Configurations
The Simulink Design Verifier software can treat block parameters in your
model as variables during its analysis. For example, suppose you specify a
variable that is defined in the MATLAB workspace as the value of a block
parameter in your model. You can instruct the Simulink Design Verifier
software to treat that parameter as another input variable in its analysis.
This allows you to

• Extend the results of a proof to consider the impact of additional parameter
values.

• Generate comprehensive test cases for situations in which parameter
values must vary to achieve more complete coverage results (for an
example, see “Parameter Configuration Example” on page 5-7).

5-2

Template for Parameter Configurations

Template for Parameter Configurations
To help you create a parameter configuration file, the Simulink Design
Verifier software provides an annotated M-file template:

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

Alternatively, you can access the template from the Parameters pane in the
Simulink Design Verifier options (see “Parameters Pane” on page 6-9).

To create a parameter configuration file, make a copy of the template and
edit the copy. The comments in the template explain the syntax for defining
parameter configurations. For more information about defining parameter
configurations, see “Defining Parameter Configurations” on page 5-4.

5-3

5 Specifying Parameter Configurations

Defining Parameter Configurations
This section describes how to define parameter configurations and outlines
the required syntax for their definition.

1 Define parameter configurations in an M-file function.

The Simulink Design Verifier software provides an annotated template for
an M-file function that you can use as a starting point (see “Template for
Parameter Configurations” on page 5-3).

2 Specify parameter configurations using a structure whose fields share the
same names as the parameters that you treat as input variables.

For example, suppose you wish to constrain the Gain and Constant value
parameters, m and b, which appear in the following model:

In your parameter configuration file, use the following names for the fields
of the structure:

params.m
params.b

3 Constrain parameters by assigning values to the fields of the structure.

Specify points using the Sldv.Point constructor, which accepts a single
value as its argument. Specify intervals using the Sldv.Interval
constructor, which requires two input arguments, i.e., a lower bound and
an upper bound for the interval. Optionally, you can provide one of the
following strings as a third input argument that specifies inclusion or
exclusion of the interval endpoints:

• '()' — Defines an open interval.

5-4

Defining Parameter Configurations

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, the Simulink Design Verifier software considers an
interval to be closed if you omit its two-character string.

The following example constrains m to 3 and b to any value in the closed
interval [0, 10]:

params.m = Sldv.Point(3);
params.b = Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead
specify single values or two-element vectors. For instance, you can
alternatively specify the previous example as:

params.m = 3;
params.b = [0 10];

Note To indicate no constraint for an input parameter, specify params.m
= {} or params.m = [] in the M-file function, or omit the declaration.
The Simulink Design Verifier software treats this parameter as free input
and uses random parameter values.

4 Use cell arrays to specify multiple constraints for a single parameter.

You can specify multiple constraints for a single parameter by using a cell
array. In this case, the Simulink Design Verifier software combines the
constraints using a logical OR operation during its analysis.

The following example constrains m to either 3 or 5, and it constrains b to
any value in the closed interval [0, 10]:

params.m = {3, 5};
params.b = [0 10];

5-5

5 Specifying Parameter Configurations

5 Use a 1-by-n structure to specify n sets of parameters.

You can specify several sets of parameters by expanding the size of your
structure.

For instance, the following example uses a 1-by-2 structure to define two
sets of parameters:

params(1).m = {3, 5};
params(1).b = [0 10];

params(2).m = {12, 15, Sldv.Interval(50, 60, '()')};
params(2).b = 5;

The first parameter set constrains m to either 3 or 5, and it constrains
b to any value in the closed interval [0, 10]. The second parameter set
constrains m to either 12, 15, or any value in the open interval (50, 60), and
it constrains b to 5.

5-6

Parameter Configuration Example

Parameter Configuration Example

In this section...

“About This Example” on page 5-7
“Constructing the Example Model” on page 5-8
“Parameterizing the Constant Block” on page 5-10
“Specifying a Parameter Configuration” on page 5-11
“Analyzing the Example Model” on page 5-13
“Simulating the Test Cases” on page 5-15

About This Example
The next five tasks describe how to create and analyze a simple Simulink
model, for which you generate test cases that achieve decision coverage.
However, in this example, achieving complete decision coverage is possible
only when the Simulink Design Verifier software treats a particular block
parameter as a variable during its analysis. Toward that end, this example
explains how to specify parameter configurations for use with the Simulink
Design Verifier software.

The following workflow guides you through the process of completing this
example:

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 5-8

2 Specify a variable as the
value of a Constant block
parameter.

“Parameterizing the Constant Block”
on page 5-10

3 Constrain the value of the
variable that the Constant
block specifies.

“Specifying a Parameter
Configuration” on page 5-11

5-7

5 Specifying Parameter Configurations

Task Description See...

4 Generate test cases for your
model and interpret the
results.

“Analyzing the Example Model” on
page 5-13

5 Simulate the test cases
and measure the resulting
decision coverage.

“Simulating the Test Cases” on page
5-15

Constructing the Example Model
In this task, you construct a simple Simulink model that you use throughout
the remaining tasks.

1 Create an empty Simulink model (see “Creating an Empty Model” in
Simulink User’s Guide for help with this step).

2 Copy the following blocks into your empty model window (see “Adding
Blocks to Your Model” in the Simulink documentation for help with this
step):

• Two Inport blocks to initiate the input signals, from the Sources library

• A Multiport Switch block to provide simple logic, from the Signal
Routing library

• A Constant block to control the switch, from the Sources library

• An Outport block to receive the output signal, from the Sinks library

3 In your model window, double-click the Multiport Switch block to access its
dialog box and specify its Number of inputs option as 2.

4 In your model window, connect the blocks so that your model looks like this
(see “Connecting Blocks” in Simulink User’s Guide for help with this step):

5-8

Parameter Configuration Example

5 In your model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

6 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category. Under Solver options on the right side,
set the Type option to Fixed-step, and then set the Solver option to
Discrete (no continuous states).

The Configuration Parameters dialog box looks as follows:

5-9

5 Specifying Parameter Configurations

7 Click Apply and OK to apply your changes and close the Configuration
Parameters dialog box.

8 Save your model as param_example.mdl for use in the next step.

Parameterizing the Constant Block
In this task, you parameterize the Constant block in your model. In particular,
you specify a variable as the value of the Constant block’s Constant value
parameter.

1 In your model window, double-click the Constant block.

The Constant block parameter dialog box appears.

5-10

Parameter Configuration Example

2 In the Constant value box, enter A.

The Constant block parameter dialog box should look as follows.

3 Click OK to apply your change and close the Constant block parameter
dialog box.

4 In the MATLAB Command Window, enter

A = 1;

This command defines in the MATLAB workspace a variable named A
whose value is 1. The Simulink software resolves the Constant value
parameter to this variable, initializing its value for simulation.

5 Save your model for use in the next step.

Specifying a Parameter Configuration
In this task, you customize the parameter configuration file template so that
it constrains the variable A.

5-11

5 Specifying Parameter Configurations

1 In your Simulink model window, select Tools > Design Verifier >
Options.

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters
dialog box, click the Design Verifier > Parameters category. In the
Parameters pane on the right side, ensure that the Apply parameters
option is enabled.

Enabling the Apply parameters option provides access to the Parameter
configuration file option.

3 Click Edit next to the Parameter configuration file option.

The Simulink Design Verifier software opens sldv_params_template.m
in an editor.

4 Edit the template’s text so that it appears as follows:

function params = params_example_function
% This function defines a parameter configuration for the
% example model that the documentation discusses.

params.A = [1 2];

The preceding code renames the function as params_example_function
and constrains parameter A to the closed interval [1 2].

5 Save your changes to the template as params_example_function.m in the
same directory as the example model.

6 Close the MATLAB Editor.

7 In the Configuration Parameters dialog box, click Browse next to the
Parameter configuration file option, and then select your parameter
configuration file, params_example_function.m.

8 Click Apply and OK to apply your change and close the Configuration
Parameters dialog box.

5-12

Parameter Configuration Example

9 Save your model for use in the next step.

Analyzing the Example Model
In this task, you execute the Simulink Design Verifier analysis using the
parameter configuration file you just created. The software generates test
cases and produces results for you to interpret.

1 In your Simulink model window, select Tools > Design Verifier >
Generate Tests.

The Simulink Design Verifier software begins analyzing your model to
generate test cases. When the software completes its analysis, it generates
the following items:

• Simulink Design Verifier report — The Simulink Design Verifier
software displays an HTML report named param_example_report.html.

• Test harness — The Simulink Design Verifier software displays a
harness model named param_example_harness.mdl.

2 In the Simulink Design Verifier report Table of Contents, click Test
Cases.

3 Click Test Case 1 to display the subsection for that test case.

5-13

5 Specifying Parameter Configurations

This section provides details about Test Case 1 that the Simulink Design
Verifier software generated to satisfy a coverage objective in the model. In
this test case, a value of 1 for parameter A satisfies the objective.

4 Scroll down to the Test Case 2 section in the Test Cases chapter.

5-14

Parameter Configuration Example

This section provides details about Test Case 2, which satisfies another
coverage objective in the model. In this test case, a value of 2 for parameter
A satisfies the objective.

Simulating the Test Cases
In this final task, you simulate the test cases that the Simulink Design
Verifier software generated in “Simulating the Test Cases” on page 5-15. In
addition, you review the coverage report that results from the simulation.

1 Open the test harness model named param_example_harness.mdl (if it
is not already open).

5-15

5 Specifying Parameter Configurations

2 The block labeled Inputs in the test harness model is a Signal Builder
block that contains the test case signals. Double-click the Inputs block to
view the test case signals.

5-16

Parameter Configuration Example

3 In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates each of the test cases in succession,
collects coverage data for each simulation, and displays an HTML report of
the combined coverage results at the end of the last simulation.

4 In the model coverage report, review the Summary section:

5-17

5 Specifying Parameter Configurations

This section summarizes the coverage results for the harness model and its
Test Unit subsystem. Observe that the subsystem achieves 100% decision
coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5-18

Parameter Configuration Example

This section reveals that the Multiport Switch block achieves complete
decision coverage because the test cases exercise each of its switch
pathways.

5-19

5 Specifying Parameter Configurations

5-20

6

Configuring Simulink
Design Verifier Options

This chapter provides an overview of the Simulink Design Verifier options
that you specify typically with the Configuration Parameters dialog box. The
following sections step you through the Simulink Design Verifier dialog panes
and describe its options.

• “Viewing Simulink® Design Verifier Options” on page 6-2

• “Configuring Simulink® Design Verifier Options” on page 6-5

• “Saving Simulink® Design Verifier Options” on page 6-19

6 Configuring Simulink® Design Verifier™ Options

Viewing Simulink Design Verifier Options
The Simulink Design Verifier software provides numerous options that
control its behavior when analyzing models. To view its options, from the
Tools menu of your Simulink model, select Design Verifier > Options.

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

6-2

Viewing Simulink® Design Verifier™ Options

Typically, you specify values for these options using the Configuration
Parameters dialog box. See “Configuration Parameters Dialog Box” in
Simulink Graphical User Interface for more information about working with
this interface.

6-3

6 Configuring Simulink® Design Verifier™ Options

Note By default, Simulink Design Verifier options do not appear in a model’s
Configuration Parameters dialog box. If you select Design Verifier >
Options from a model’s Tools menu, the Simulink Design Verifier software
associates its options with that model. Afterward, you can access those
options directly from the Configuration Parameters dialog box or Model
Explorer (see “The Model Explorer” in Simulink User’s Guide).

Alternatively, you can use the sldvoptions function to view Simulink Design
Verifier options at the command line. Use the following syntax to access
and view programmatically the options associated with the Simulink model
system:

opts = sldvoptions('system');
get(opts)

See sldvoptions in Chapter 11, “Function Reference” for more information.

6-4

Configuring Simulink® Design Verifier™ Options

Configuring Simulink Design Verifier Options

In this section...

“Design Verifier Pane” on page 6-5
“Block Replacements Pane” on page 6-7
“Parameters Pane” on page 6-9
“Test Generation Pane” on page 6-10
“Property Proving Pane” on page 6-12
“Results Pane” on page 6-14
“Report Pane” on page 6-17

Design Verifier Pane
In the Design Verifier pane, you specify analysis options and configure
Simulink Design Verifier output.

The Design Verifier pane contains the following settings:

• “Analysis options” on page 6-6

• “Output” on page 6-6

6-5

6 Configuring Simulink® Design Verifier™ Options

• “Check Model Compatibility” on page 6-7

• “Generate Tests or Prove Properties” on page 6-7

Analysis options
This group contains the following controls that enable you to specify how the
Simulink Design Verifier software analyzes Simulink models.

Mode. Specifies the mode in which the Simulink Design Verifier software
operates— Test generation (the default) or Property proving. Depending
on the value of this parameter, if you want to start an analysis, click the
Generate Tests or Prove Properties button on this pane.

Maximum analysis time. Specifies the maximum time (in seconds) that
the Simulink Design Verifier software spends analyzing the model. The
default value is 600 seconds.

Display unsatisfiable test objectives. If you select this option, it causes
the Simulink Design Verifier software to display a warning message in the
Simulation Diagnostics Viewer when it cannot satisfy a test objective.

Tip If you first select Display unsatisfiable test objectives, set the
Test suite optimization option to the Combined objectives strategy
and analyze the model. If that test returns objectives without outcomes,
select the Individual objectives strategy and reanalyze the model. The
Individual objectives strategy analyzes each objective independently and
more accurately identifies unsatisfiable objectives.

Automatic stubbing of unsupported blocks and functions. If you select
this option, it specifies that the Simulink Design Verifier software ignores
unsupported blocks and functions, and proceeds with the analysis.

Output
This group contains the following controls that enable you to configure
Simulink Design Verifier output.

6-6

Configuring Simulink® Design Verifier™ Options

Output directory. Specifies a directory to which the Simulink Design
Verifier software writes its output. Enter a path that is either absolute or
relative to the current directory.

The default value is sldv_output/$ModelName$. $ModelName$ is a token that
represents the model name.

Make output file names unique by adding a suffix. If you select
this option, it causes the Simulink Design Verifier software to append an
incremental numeric suffix to output file names. Selecting this option prevents
the software from overwriting existing files that have the same name.

Check Model Compatibility
Click Check Model Compatibility to see if your model is compatible with
the Simulink Design Verifier software. If you are setting options for a
subsystem that you selected, click Check Subsystem Compatibility.

Generate Tests or Prove Properties
In the Configuration Parameters dialog box, click Generate Tests or Prove
Properties to analyze a model.

If you set theMode parameter to Test generation, click Generate Tests to
begin a test-case generation analysis of the model. If you are setting options
for a subsystem that you selected, click Generate Tests for Subsystem.

If you set theMode parameter to Property proving, click Prove Properties
to begin property-proving analysis of the model. If you are setting options for
a subsystem that you selected, click Prove Properties of Subsystem.

Block Replacements Pane
In the Block Replacements pane, you specify options that control how the
Simulink Design Verifier software preprocesses the models it analyzes.

6-7

6 Configuring Simulink® Design Verifier™ Options

Block replacements
This group contains the following controls that enable you to specify block
replacement options.

Apply block replacements. If selected, this option causes the Simulink
Design Verifier software to replace blocks in the model before its analysis
(see Chapter 4, “Working with Block Replacements”). By default, this option
is disabled. Enabling this option provides access to the List of block
replacement rules and File path of the output model options.

List of block replacement rules. Specifies a list of block replacement
rules that the Simulink Design Verifier software processes before analyzing
the model. This option is accessible only if Apply block replacements is
selected. The software processes the block replacement rules in the order
that you list them.

Specify block replacement rules as a list delimited by spaces, commas, or
carriage returns (see “Configuring Block Replacements” on page 4-15).

6-8

Configuring Simulink® Design Verifier™ Options

The default value is <FactoryDefaultRules>. If you specify the default
value, the Simulink Design Verifier software uses its factory default block
replacement rules (see “Built-In Block Replacements” on page 4-3).

File path of the output model. Specifies a directory for the model that
results after applying the block replacement rules. Enter a path name that
is either absolute or relative to the path name specified as the Output
directory. This option is accessible only if Apply block replacements is
selected.

The default value is $ModelName$_replacement. $ModelName$ is a token that
represents the model name.

Parameters Pane
In the Parameters pane, you specify options that control how the Simulink
Design Verifier software uses parameter configurations when analyzing
models.

Parameters
This group contains the following controls that enable you to specify
parameter configurations.

Apply parameters. If selected (the default), this option causes the Simulink
Design Verifier software to use parameter configurations when analyzing a
model (see Chapter 5, “Specifying Parameter Configurations”). Enabling this
option provides access to the Parameter configuration file option.

Parameter configuration file. Specifies an M-file function that defines
parameter configurations for a model. Click the Browse button to select an
existing M-file function using a file chooser dialog box. Click the Edit button
to open the specified M-file function in an editor.

6-9

6 Configuring Simulink® Design Verifier™ Options

The default value is sldv_params_template.m, a template that you can edit
and save. The comments in the template explain the syntax you use to specify
parameter configurations.

Tip See the Parameter Identification Example demo for an illustration of how
to use parameter configurations when generating tests cases for a Simulink
model.

Test Generation Pane
In the Test Generation pane, you specify options that control how the
Simulink Design Verifier software generates tests for the models it analyzes.

Test generation
This group contains the following controls that enable you to specify test
generation options.

Model coverage objectives. Specifies the type of model coverage that
the Simulink Design Verifier software attempts to achieve. Select either
Decision, Condition Decision, MCDC, or None.

When you set Model coverage objectives to MCDC, the Simulink Design
Verifier software automatically enables every coverage objective for decision
coverage and condition coverage as well. Similarly, enabling coverage for
condition coverage causes every decision and condition coverage outcome to be
enabled. Each Simulink Design Verifier coverage objective includes all the
objectives in a less-strict coverage metric.

6-10

Configuring Simulink® Design Verifier™ Options

Test conditions. This option allows you to enable or disable Test Condition
blocks in the current model either globally or locally. Select one of the
following options:

• Use local settings— Enables or disables Test Condition blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all— Enables all Test Condition blocks in the model regardless of
the settings of their Enable parameters.

• Disable all— Disables all Test Condition blocks in the model regardless
of the settings of their Enable parameters.

Test objectives. This option allows you to enable or disable Test Objective
blocks in the current model either globally or locally. Select one of the
following options:

• Use local settings — Enables or disables Test Objective blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all— Enables all Test Objective blocks in the model regardless of
the settings of their Enable parameters.

• Disable all— Disables all Test Objective blocks in the model regardless
of the settings of their Enable parameters.

Maximum test case steps. Specifies the maximum number of simulation
steps the Simulink Design Verifier software takes when attempting to satisfy
a test objective.

Test suite optimization. This option allows you to specify the optimization
strategy that the Simulink Design Verifier software uses when generating
test cases. Select one of the following options:

• Combined objectives— Minimizes the number of test cases in a suite by
generating test cases that address more than one test objective. Each test
case tends to be long, i.e., it includes many time steps.

This option does not necessarily find unsatisfiable objectives, and often
leaves them undecided. To identify unsatisfiable objectives, first, run the

6-11

6 Configuring Simulink® Design Verifier™ Options

Combined objectives strategy to generate test cases. If the analysis
returns objectives without outcomes, set the optimization strategy
to Individual objectives and rerun the analysis to identify any
unsatisfiable objectives.

• Individual objectives— Maximizes the number of test cases in a suite
by generating test cases that each address only one test objective. Each
test case tends to be short, i.e., it includes only a few time steps.

Since each test case is analyzed independently, use this strategy to find
unsatisfiable objectives.

• Large model—Minimizes the number of test cases in a suite by generating
cases that address more than one test objective. This strategy is tailored
for large models that contain nonlinearities and numerous test objectives;
consequently, it tends to use all the time that the Maximum analysis
time option allots.

• Long test cases — Combines test cases to create a smaller number of
test cases. This strategy generates fewer, but longer, test cases that each
satisfy multiple test objectives and creates a more efficient analysis and
easier-to-review results.

Property Proving Pane
In the Property Proving pane, you specify options that control how the
Simulink Design Verifier software proves properties for the models it analyzes.

Property proving
This group contains the following controls that enable you to specify
property-proving options.

6-12

Configuring Simulink® Design Verifier™ Options

Assertion blocks. This option allows you to enable or disable Assertion
blocks in the current model, either globally or locally. Select one of the
following options:

• Use local settings — Enables or disables Assertion blocks based on
the value of the Enable assertion parameter of each block. If a block’s
Enable assertion parameter is selected, the block is enabled; otherwise,
the block is disabled.

• Enable all— Enables all Assertion blocks in the model regardless of the
settings of their Enable assertion parameters.

• Disable all— Disables all Assertion blocks in the model regardless of the
settings of their Enable assertion parameters.

Proof assumptions. This option allows you to enable or disable Proof
Assumption blocks in the current model either globally or locally. Select one
of the following options:

• Use local settings—Enables or disables Proof Assumption blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all— Enables all Proof Assumption blocks in the model regardless
of the settings of their Enable parameters.

• Disable all — Disables all Proof Assumption blocks in the model
regardless of the settings of their Enable parameters.

Strategy. Specifies the strategy the Simulink Design Verifier software uses
when proving properties. Select one of the following options:

• Find violation— If this strategy is selected, the Simulink Design Verifier
software searches for property violations within the number of simulation
steps specified by the Maximum violation steps option. Enabling this
option provides access to theMaximum violation steps option.

• Prove— If this strategy is selected, the Simulink Design Verifier software
performs property proofs.

• Prove with violation detection — This strategy combines the Find
violation and Prove strategies. If selected, the Simulink Design Verifier
software searches for property violations within the number of simulation

6-13

6 Configuring Simulink® Design Verifier™ Options

steps specified by theMaximum violation steps option; then it attempts
to prove properties for which it failed to detect a violation. Enabling this
option provides access to theMaximum violation steps option.

See “Techniques for Proving Properties of Large Models” on page 10-20.

Maximum violation steps. Specifies the maximum number of simulation
steps over which the Simulink Design Verifier software searches for property
violations. The software does not search beyond the maximum number of
simulation steps that you specify; it does not identify violations that occur
later in a simulation. This option is accessible only if Strategy specifies
either Find violation or Prove with violation detection.

Results Pane
In the Results pane, you specify options that control how the Simulink
Design Verifier software handles the results that it generates.

6-14

Configuring Simulink® Design Verifier™ Options

The Results pane contains the following groups of options:

• “Data file options” on page 6-15

• “Harness model options” on page 6-16

• “SystemTest options” on page 6-16

Data file options
This group contains the following controls that enable you to specify how the
Simulink Design Verifier software handles the MAT-file it produces.

Save test data to file. If selected, this option causes the Simulink Design
Verifier software to save the test data it generates to a MAT-file. Enabling
this option provides access to the Data file name option.

Data file name. Specifies a file name for the MAT-file containing the
generated test data. Enter a path name that is either absolute or relative to
the directory specified by Output directory. This option is accessible only if
Save test data to file is selected.

The default value is $ModelName$_sldvdata. $ModelName$ is a token that
represents the model name.

Include expected output values. If selected, this option causes the
Simulink Design Verifier software to simulate the model using the test
case signals that it produces. For each test case, the software collects the
simulation output values associated with Outport blocks in the top-level
system and includes those values in the MAT-file that it generates (see
“TestCases Field / CounterExamples Field” on page 9-5).

Randomize data that does not affect outcome. If selected, this option
causes the Simulink Design Verifier software to assign random values instead
of zeros to test case or counterexample signals that have no impact on test
or proof objectives in a model. In the Simulink Design Verifier report, the
Generated Input Data table always displays a dash (–) for such signals (see
“Test Cases / Properties Chapter” on page 9-29).

6-15

6 Configuring Simulink® Design Verifier™ Options

Harness model options
This group contains the following controls that enable you to specify how the
Simulink Design Verifier software handles the test harness it produces.

Save test harness as model. If selected, this option causes the Simulink
Design Verifier software to save the test harness it generates as a model file.
Enabling this option provides access to the Harness model file name option.

Harness model file name. Specifies a file name for the test harness model.
Enter a path name that is either absolute or relative to the path name
specified by Output directory. This option is accessible only if Save test
harness as model is selected.

The default value is $ModelName$_harness. $ModelName$ is a token that
represents the model name.

Reference input model in generated harness. If selected, this option
causes the Simulink Design Verifier software to use model reference to run
the input model in the generated test harness instead of inserting a copy of
the input model.

SystemTest options

Save test harness as SystemTest TEST-file (will reference saved data
file). If selected, this option causes the Simulink Design Verifier software to
produce the .test configuration file for running generated test cases inside
the SystemTest™ environment. Enter a path name that is either absolute
or relative to the path name specified by Output directory. Enabling this
option provides access to the SystemTest file name option.

Note The option to create a SystemTest TEST-file is only available
in test-generation mode; you cannot create this file when running a
property-proving analysis.

6-16

Configuring Simulink® Design Verifier™ Options

SystemTest file name. Specifies a file name for the SystemTest TEST-file.
Enter a path name that is either absolute or relative to the path name
specified by Output directory. This option is accessible only if the Save test
harness as SystemTest TEST-file (will reference saved data file) is
selected.

The default value is $ModelName$_harness. $ModelName$ is a token that
represents the model name.

Report Pane
In the Report pane, you specify options that control how the Simulink Design
Verifier software reports its results.

Report
This group contains the following controls that enable you to specify report
options.

Generate report of the results. If selected, this option causes the Simulink
Design Verifier software to save the HTML report it generates. If you select
this option, you must also enable the Save test harness as model option
(see “Harness model options” on page 6-16).

Enabling this option provides access to the Report file name, Include
screen shots of properties and test objectives, and Display report
options.

6-17

6 Configuring Simulink® Design Verifier™ Options

Report file name. Specifies a file name for the HTML report. Enter a path
name that is either absolute or relative to the directory specified by Output
directory. This option is accessible only if Generate report of the results
is selected.

The default value is $ModelName$_report. $ModelName$ is a token that
represents the model name.

Include screen shots of properties and test objectives. If selected, this
option causes the Simulink Design Verifier software to insert a screen shot of
each property to the corresponding section of the HTML report it generates.
This option is only valid in property-proving mode. This option is disabled by
default. It is accessible only if Generate report of the results is selected.

Display report. If selected, this option causes the Simulink Design Verifier
software to display the HTML report it generates after completing its
analysis. This option is enabled by default. It is accessible only if Generate
report of the results is selected.

6-18

Saving Simulink® Design Verifier™ Options

Saving Simulink Design Verifier Options
The Simulink Design Verifier software stores its options as a configuration set
component attached to your model file (see “Configuration Sets” in Simulink
User’s Guide). To save the values of Simulink Design Verifier options that
you specified for your model, simply save your model (see “Saving a Model”
in Simulink User’s Guide).

The Simulink Design Verifier options stay with the model, even if you open
the model on a MATLAB installation that does not have a Simulink Design
Verifier license. If you then open the model on a system with a Simulink
Design Verifier license, the software can analyze the model with the blocks
and options that you originally added to the model.

6-19

6 Configuring Simulink® Design Verifier™ Options

6-20

7

Generating Test Cases

This chapter describes how to use the Simulink Design Verifier software to
generate test cases for a model. The following sections introduce the notion
of test case generation and present an example in which you generate test
cases for a simple Simulink model:

• “About Test Case Generation” on page 7-2

• “Basic Workflow for Generating Test Cases” on page 7-3

• “Generating Test Cases for a Model” on page 7-4

• “Generating Test Cases for a Subsystem” on page 7-30

7 Generating Test Cases

About Test Case Generation
The Simulink Design Verifier software can generate test cases that satisfy
your model’s coverage objectives, including:

• Decision coverage

• Condition coverage

• Modified condition/decision coverage (MC/DC)

Test cases assist you in confirming that a model behaves correctly by
demonstrating how its blocks execute in different modes. When generating
test cases, the software performs a formal analysis of your model. After
completing its analysis, the software produces a report that details its results
and a test harness model that contains test cases. Simply review the report
and simulate the test harness model to confirm that the test cases achieve
your model’s coverage objectives.

The software provides two blocks that allow you to customize test cases for
your Simulink models:

• The Test Objective block defines the values of a signal that a test case
must satisfy.

• The Test Condition block constrains the values of a signal during an
analysis.

The Simulink Design Verifier software also provides two functions that
extend the Stateflow action language, allowing you to customize test cases
for your Stateflow charts. These functions behave identically to the Test
Objective and Test Condition blocks. Use the following syntax to invoke these
functions in a Stateflow chart:

dv.test(expr, "{values}")
dv.condition(expr, "{values}")

where expr represents the objective or condition, e.g., x > 0, and the optional
argument values specifies the intervals that comprise the test objective or
condition. For more information about the values argument, see “Specifying
Test Objectives” on page 12-18 and “Specifying Test Conditions” on page 12-13.

7-2

Basic Workflow for Generating Test Cases

Basic Workflow for Generating Test Cases
Here is the recommended workflow for generating test cases for your model:

1 Ensure that your model is compatible for use with the Simulink Design
Verifier software (for an example, see “Checking Compatibility of the
Example Model” on page 7-6).

2 Optionally, instrument your model with blocks that specify test objectives
and test conditions (for an example, see “Customizing Test Generation” on
page 7-21).

3 Specify Simulink Design Verifier options that control how it generates test
cases for your model. (For an example, see “Configuring Test Generation
Options” on page 7-10.)

4 Execute the Simulink Design Verifier analysis and review its results
(for examples, see “Analyzing the Example Model” on page 7-13 and
“Reanalyzing the Example Model” on page 7-25).

7-3

7 Generating Test Cases

Generating Test Cases for a Model

In this section...

“About This Example” on page 7-4
“Constructing the Example Model” on page 7-5
“Checking Compatibility of the Example Model” on page 7-6
“Configuring Test Generation Options” on page 7-10
“Analyzing the Example Model” on page 7-13
“Customizing Test Generation” on page 7-21
“Reanalyzing the Example Model” on page 7-25
“Analyzing Contradictory Models” on page 7-29

About This Example
The sections that follow describe a simple Simulink model, for which you
generate test cases that achieve decision coverage. This example will help you
understand the test-generation capabilities of the Simulink Design Verifier
software.

The following workflow guides you through the process of completing this
example.

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 7-5

2 Ensure your model’s
compatibility with the
Simulink Design Verifier
software.

“Checking Compatibility of the
Example Model” on page 7-6

3 Configure the Simulink
Design Verifier software to
generate tests.

“Configuring Test Generation
Options” on page 7-10

7-4

Generating Test Cases for a Model

Task Description See...

4 Generate test cases for your
model and interpret the
results.

“Analyzing the Example Model” on
page 7-13

5 Add a Test Condition block
to customize test generation.

“Customizing Test Generation” on
page 7-21

6 Generate test cases for
your modified model and
interpret the results.

“Reanalyzing the Example Model” on
page 7-25

Constructing the Example Model
In this task, you construct a simple Simulink model that you use throughout
the remaining tasks:

1 Create a new Simulink model.

2 Copy the following blocks into your empty model window:

• An Inport block, from the Sources library, to initiate the input signal
whose value the Simulink Design Verifier software controls

• A Switch block to provide simple logic, from the Signal Routing library

• Two Constant blocks to serve as Switch block data inputs, from the
Sources library

• An Outport block to receive the output signal, from the Sinks library

3 Double-click one of the Constant blocks in your model and specify its
Constant value parameter as 2.

4 Connect the blocks so that your model appears similar to the following
diagram.

7-5

7 Generating Test Cases

5 Save your model as example.mdl for use in the remaining tasks.

Checking Compatibility of the Example Model
In this task, you ensure that your model is compatible for use with the
Simulink Design Verifier software. Specifically, you check the compatibility
of the example model:

1 In your Simulink model window, select Tools > Design Verifier > Check
Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which indicates that your model is incompatible.

7-6

Generating Test Cases for a Model

It also displays the following incompatibility error in the Simulation
Diagnostics Viewer.

7-7

7 Generating Test Cases

The error message informs you that the Simulink Design Verifier software
does not support variable-step solvers. To work around this incompatibility,
you must use a fixed-step solver.

2 In your Simulink model window, select Simulation > Configuration
Parameters to display the Configuration Parameters dialog box.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category (if not already selected). Under Solver
options on the right side, set the Type option to Fixed-step and set the
Solver option to Discrete (no continuous states).

The Configuration Parameters dialog box should look like this.

7-8

Generating Test Cases for a Model

4 Click Apply and OK to apply your changes and close the Configuration
Parameters dialog box.

5 Recheck the compatibility of your model. In your Simulink model window,
select Tools > Design Verifier > Check Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which confirms that your model is compatible for analysis.

7-9

7 Generating Test Cases

6 Save your model for use in the next task.

What If a Model Is Partially Compatible?
If the compatibility check indicates that your model is partially compatible,
your model contains at least one element that is incompatible with the
Simulink Design Verifier software. You can continue analyzing a partially
compatible model if you turn on automatic stubbing. For details, see
“Handling Incompatibilities with Automatic Stubbing” on page 2-6.

Configuring Test Generation Options
In this task, you configure the Simulink Design Verifier software to generate
test cases that achieve complete decision coverage for your simple model:

1 In your Simulink model window, select Tools > Design
Verifier > Options.

7-10

Generating Test Cases for a Model

The Simulink Design Verifier options appear in the Configuration
Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Design Verifier category (if not already selected). Under
Analysis options on the right side, ensure that theMode option specifies
Test generation.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Test Generation category.

4 On the Test Generation pane, set the value of the Model coverage
objectives parameter to Decision.

The Configuration Parameters dialog box appears as follows.

7-11

7 Generating Test Cases

Note The Test suite optimization parameter is set by default to
Combined objectives. If you want to generate fewer but longer test cases,
select Long test cases for the Test suite optimization parameter.

5 Click Apply and OK to apply your change and close the Configuration
Parameters dialog box.

6 Save your model for use in the next task.

7-12

Generating Test Cases for a Model

Note On the Test Generation pane, you can optionally specify values for
other parameters that control how the Simulink Design Verifier software
generates test cases for your model. See “Test Generation Pane” on page
6-10 for more information.

Analyzing the Example Model
In this task, you execute the Simulink Design Verifier analysis you configured
in the previous task. The software generates test cases for your example
model and produces results for you to interpret:

1 In your model window, select Tools > Design Verifier > Generate Tests.

The Simulink Design Verifier software begins analyzing your model to
generate test cases. During its analysis, the software displays a log window.

7-13

7 Generating Test Cases

The log window updates you on the progress of the analysis, providing
information such as the number of test objectives processed and how many
of those objectives were satisfied. The log window includes a Stop button
that you can click to terminate the proof at any time.

When the software completes its analysis, it displays the following items:

• An HTML report named example_report.html

7-14

Generating Test Cases for a Model

• A test harness model named example_harness.mdl

• A Signal Builder window containing the test-case signals

The remaining steps in this section help you interpret the results that
you obtained.

2 Review the Simulink Design Verifier report, starting with the Table of
Contents, whose items you can click to navigate the report.

3 In the Table of Contents, click Summary to display the report’s Summary
chapter.

The Summary chapter lists information about the model and the status
of the objectives—satisfied or not.

4 In the Table of Contents, click Analysis Information to display the
report’s Analysis Information chapter.

7-15

7 Generating Test Cases

The Analysis Information chapter provides information about:

• The model you analyzed

• The options you specified for the analysis

• Approximations the software performed during the analysis

7-16

Generating Test Cases for a Model

5 In the Table of Contents, click Test Objectives Status to display the
report’s Test Objectives Status chapter.

This table indicates that the software satisfied both test objectives
associated with the Switch block in your model, for which it generated
two test cases.

6 Under the Test Case column of the table, click 2 to display the report’s
Test Case 2 section.

7-17

7 Generating Test Cases

This section provides details about a test case that the Simulink Design
Verifier software generated to achieve an objective in your model. This test
case achieves test objective 1, which involves the Switch block passing its
third input. Specifically, the software determined that a value of –1 for the
Switch block control signal enables the block to pass its third input.

7 Review the harness model named example_harness.mdl.

7-18

Generating Test Cases for a Model

The harness model contains the following items:

• Signal Builder block named Inputs — Groups of signals that achieve
test objectives in your model

• Subsystem block named Test Unit— A copy of your model

• DocBlock named Test Case Explanation— A text description of the
test cases that the Simulink Design Verifier software generates

Note See the Simulink Reference for more information about interacting
with blocks such as the Signal Builder, Subsystem, and DocBlock.

8 To simulate the test harness and confirm that the test cases achieve
complete decision coverage, double-click the Inputs block to display the
Signal Builder dialog box.

7-19

7 Generating Test Cases

9 In the Signal Builder dialog box, click the Run all button .

The Simulink Design Verifier software simulates the test harness using all
the test cases, collects model coverage information, and displays a coverage
report that includes the following Summary.

7-20

Generating Test Cases for a Model

The coverage report indicates that the software generated test cases
that achieve complete decision coverage for your example model (see
“Understanding Model Coverage Reports” in the Simulink Verification
and Validation User’s Guide).

What If the Analysis Generates Many Test Cases?
If you prefer to review results that are combined into a smaller number
of longer test cases, set the Test suite optimization parameter to Long
test cases and rerun the analysis. In the Long test cases optimization,
the analysis generates fewer but longer test cases that each satisfy multiple
test objectives. This optimization creates a more efficient analysis and
easier-to-review results.

To compare the Long test cases results to the Combined objectives
results (the default), see “Combining Test Cases” on page 1-23.

Customizing Test Generation
In this task, you modify the example model for which you attained complete
decision coverage. Specifically, you customize test generation by adding and
configuring a Test Condition block:

1 In the MATLAB Command Window, enter sldvlib to display the Simulink
Design Verifier library.

7-21

7 Generating Test Cases

2 Copy the Test Condition block to your model by dragging it from the
Simulink Design Verifier library to your model window.

3 In the model window, insert the Test Condition block between the Switch
and Outport blocks.

7-22

Generating Test Cases for a Model

4 Double-click the Test Condition block in your model to access its attributes.

The Test Condition block parameter dialog box appears.

5 In the Values box, enter [-0.1, 0.1]. When generating test cases for this
model, the Simulink Design Verifier software constrains the signal values
entering the Switch block control port to the specified interval.

7-23

7 Generating Test Cases

6 Click OK to apply your changes and close the Test Condition block
parameter dialog box.

7 Save your model for use in the next task.

Simulink Design Verifier blocks are preserved with a model, even if you open
the model on a MATLAB installation that does not have a Simulink Design
Verifier license. If you then open the model on a system with a Simulink
Design Verifier license, the software can analyze the model with the blocks
and options that you originally added to the model.

7-24

Generating Test Cases for a Model

Reanalyzing the Example Model
In this task, you analyze the example model with the Test Condition block.
To observe how the Test Condition block affects test generation, compare
the result of this analysis to the result that you obtained in “Analyzing the
Example Model” on page 7-13.

1 In the model window, select Tools > Design Verifier > Generate Tests.

The Simulink Design Verifier software displays a log window and begins
analyzing your model to generate test cases.

When the software completes the analysis, it displays a new Simulink
Design Verifier report named example_report1.html.

2 To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that the Simulink Design Verifier software
satisfied two test objectives in your model.

3 In the Table of Contents, click Analysis Information. Scroll to the
bottom of this chapter, to the Constraints section.

7-25

7 Generating Test Cases

This section lists the Test Condition block that you added to constrain the
value of the Switch block control signal to the interval [–0.1, 0.1].

4 In the Table of Contents, click Test Objectives Status.

This table indicates that the Simulink Design Verifier software satisfied
both test objectives associated with the Switch block in your model, for
which it generated two test cases.

5 Under the Test Cases column of the table, click 2.

7-26

Generating Test Cases for a Model

This section provides details about a test case that the software generated
to achieve an objective in your model. This test case achieves test objective
1, which involves the Switch block passing its third input. Although the
Test Condition block restricted the domain of input signals to the interval
[–0.1, 0.1], the software determined that a value of –0.05 for the Switch
block control signal satisfies the objective.

6 To confirm that the test case achieves complete decision coverage, go to the
harness model named example_harness1.mdl.

7 Double-click the Inputs block to display the Signal Builder dialog box.

7-27

7 Generating Test Cases

8 In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness using both test cases,
collects model coverage information, and displays a coverage report whose
Summary section appears as follows.

7-28

Generating Test Cases for a Model

The coverage report indicates the Simulink Design Verifier software
generated test cases that achieve complete decision coverage for your
example model.

Analyzing Contradictory Models
If the analysis produces the error The model is contradictory in its
current configuration, the software detected a contradiction in your
model and it cannot analyze the model. You can have a contradiction if your
model has Test Objective blocks with incorrect parameters, for example, an
objective that states that a signal has to be between 0 and 5 when the signal
is constant 10.

If the software detects a contradiction, all previous results are invalidated
and the software reports that the some of the objectives are unsatisfiable.

7-29

7 Generating Test Cases

Generating Test Cases for a Subsystem
If you have a large model, you can generate test cases for subsystems in the
model and review the analysis in smaller, manageable reports. The workflow
for generating test cases for a subsystem is as follows:

1 Open the model that contains the subsystem.

2 Make the subsystem atomic.

3 Run the Simulink Design Verifier software using the Generate Tests for
Subsystem option.

4 Review the results.

The tutorial in “Analyzing a Subsystem” on page 1-26 explains how to analyze
the Controller subsystem in the Cruise Control Test Generation model.

7-30

8

Proving Properties of a
Model

This chapter describes how to use the Simulink Design Verifier software to
prove properties of your model. The following sections introduce the notion
of property proofs and present an example in which you prove a property
of a simple Simulink model:

• “About Property Proofs” on page 8-2

• “Basic Workflow for Proving Model Properties” on page 8-3

• “Proving Properties in a Model” on page 8-4

• “Proving Properties in a Subsystem” on page 8-27

• “Proving Complex Properties” on page 8-28

8 Proving Properties of a Model

About Property Proofs
The Simulink Design Verifier software can prove properties of your model.
Here, the term property refers to a logical expression of signal values in a
model. For example, you can specify that a signal in your model should attain
a particular value or range of values during simulation. You can then use the
Simulink Design Verifier software to prove whether such properties are valid.
The software performs a formal analysis of your model to prove or disprove
the specified properties. If the software disproves a property, it provides a
counterexample that demonstrates a property violation.

The Simulink Design Verifier software provides two blocks that allow you to
specify properties in your Simulink models. Use the Proof Objective block to
define the values of a signal that the Simulink Design Verifier software will
prove. Use the Proof Assumption block to constrain the values of a signal
during a proof. For more information about these blocks, refer to Chapter
12, “Block Reference”.

Note Blocks from the Model Verification library in the Simulink software
behave like a Proof Objective block during Simulink Design Verifier proofs.
Hence, you can use Assertion blocks and other Model Verification blocks to
specify properties of your model. See “Model Verification” in the Simulink
Reference for more information about these blocks.

The Simulink Design Verifier software also provides two functions that
extend the Stateflow action language, allowing you to specify properties
in your Stateflow charts. These functions behave identically to the Proof
Objective and Proof Assumption blocks. Use the following syntax to invoke
these functions in a Stateflow chart:

dv.prove(expr, "{values}")
dv.assume(expr, "{values}")

where expr represents the objective or assumption, e.g., x > 0, and the
optional argument values specifies the intervals that comprise the proof
objective or assumption. For more information about the values argument,
see “Specifying Proof Objectives” on page 12-8 and “Specifying Proof
Assumptions” on page 12-3.

8-2

Basic Workflow for Proving Model Properties

Basic Workflow for Proving Model Properties
Here is the recommended workflow for proving properties of your model:

1 Ensure that your model is compatible for use with the Simulink Design
Verifier software (for an example, see “Checking Compatibility of the
Example Model” on page 8-6).

2 Instrument your model with blocks that specify proof objectives and proof
assumptions (for examples, see “Instrumenting the Example Model” on
page 8-10 and “Customizing the Example Proof” on page 8-21).

3 Specify Simulink Design Verifier options that control how it proves the
properties of your model (for an example, see “Configuring Property-Proving
Options” on page 8-13).

4 Execute the Simulink Design Verifier analysis and review its results
(for examples, see “Analyzing the Example Model” on page 8-15 and
“Reanalyzing the Example Model” on page 8-24).

See “Proving Properties in a Model” on page 8-4 for an exercise that
demonstrates this workflow.

8-3

8 Proving Properties of a Model

Proving Properties in a Model

In this section...

“About This Example” on page 8-4
“Constructing the Example Model” on page 8-5
“Checking Compatibility of the Example Model” on page 8-6
“Instrumenting the Example Model” on page 8-10
“Configuring Property-Proving Options” on page 8-13
“Analyzing the Example Model” on page 8-15
“Customizing the Example Proof” on page 8-21
“Reanalyzing the Example Model” on page 8-24
“Analyzing Contradictory Models” on page 8-25

About This Example
The sections that follow describe a simple Simulink model, for which you
prove a property that you specify using a Proof Objective block. This example
will help you understand the property-proving capabilities of the Simulink
Design Verifier software.

The following workflow guides you through the process of completing this
example:

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 8-5

2 Ensure your model’s
compatibility with the
Simulink Design Verifier
software.

“Checking Compatibility of the
Example Model” on page 8-6

3 Add a Proof Objective block
to your model to prepare for
its proof.

“Instrumenting the Example Model”
on page 8-10

8-4

Proving Properties in a Model

Task Description See...

4 Configure the Simulink
Design Verifier software to
prove properties.

“Configuring Property-Proving
Options” on page 8-13

5 Prove a property of your
model and interpret the
results.

“Analyzing the Example Model” on
page 8-15

6 Add a Proof Assumption
block to customize the proof.

“Customizing the Example Proof” on
page 8-21

7 Prove a property of your
modified model and
interpret the results.

“Reanalyzing the Example Model” on
page 8-24

Constructing the Example Model
In this task, you construct a simple Simulink model that you use throughout
the remaining tasks. To complete this task, perform the following steps:

1 Create an empty Simulink model.

2 Copy the following blocks into your empty model window:

• An Inport block, from the Sources library, to initiate the input signal
whose value the Simulink Design Verifier software controls

• A Compare To Zero block to provide simple logic, from the Logic and
Bit Operations library

• An Outport block to receive the output signal, from the Sinks library

3 Connect these blocks such that your model appears similar to the following.

8-5

8 Proving Properties of a Model

4 Save your model as example.mdl for use in the next task.

Checking Compatibility of the Example Model
In this task, you ensure that a model is compatible for use with the Simulink
Design Verifier software. Specifically, you check the compatibility of the
simple Simulink model that you created in the previous task. To complete
this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Check
Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which indicates that your model is incompatible.

8-6

Proving Properties in a Model

It also displays the following incompatibility error in the Simulation
Diagnostics Viewer.

8-7

8 Proving Properties of a Model

The error message informs you that the Simulink Design Verifier software
does not support variable-step solvers. To work around this incompatibility,
you must use a fixed-step solver.

2 In your Simulink model window, select Simulation > Configuration
Parameters.

The Configuration Parameters dialog box appears.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category (if not already selected). Under Solver
options on the right side, set the Type option to Fixed-step, and then set
the Solver option to Discrete (no continuous states).

8-8

Proving Properties in a Model

4 Click Apply and OK to apply your changes and close the Configuration
Parameters dialog box.

5 Recheck the compatibility of your model. In your Simulink model window,
select Tools > Design Verifier > Check Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which confirms that your model is compatible for analysis.

8-9

8 Proving Properties of a Model

6 Save your example.mdl model for use in the next task.

What If a Model Is Partially Compatible?
If the compatibility check indicates that your model is partially compatible,
your model contains at least one element that is incompatible with the
Simulink Design Verifier software. You can continue analyzing a partially
compatible model if you turn on automatic stubbing. For details, see
“Handling Incompatibilities with Automatic Stubbing” on page 2-6.

Instrumenting the Example Model
In this task, you prepare your example model so that you can prove its
properties with the Simulink Design Verifier software. Specifically, you
instrument the model by adding and configuring a Proof Objective block. To
complete this task, perform the following steps:

8-10

Proving Properties in a Model

1 In the MATLAB Command Window, enter sldvlib.

The Simulink Design Verifier library appears.

2 Copy the Proof Objective block to your model by dragging it from the
Simulink Design Verifier library to your model window.

3 In your model window, insert the Proof Objective block between the
Compare To Zero and Outport blocks (see “Inserting Blocks in a Line” in
the Simulink documentation for help with this step).

8-11

8 Proving Properties of a Model

4 Double-click the Proof Objective block in your model to access its attributes.

The Proof Objective block parameter dialog box appears.

5 In the Values box, enter 1. The Simulink Design Verifier software will
attempt to prove that the signal output by the Compare To Zero block
always attains this value for any signals that it receives.

8-12

Proving Properties in a Model

6 Click Apply and OK to apply your changes and close the Proof Objective
block parameter dialog box.

7 Save your example.mdl model for use in the next task.

Configuring Property-Proving Options
In this task, you configure the Simulink Design Verifier software to prove
properties of the simple Simulink model that you instrumented. To complete
this task, perform the following steps:

1 In your Simulink model window, select Tools > Design
Verifier > Options.

8-13

8 Proving Properties of a Model

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, select the Design Verifier category. Under Analysis options on the
right side, set the Mode option to Property proving.

3 Click Apply and OK to apply your changes and close the Configuration
Parameters dialog box.

8-14

Proving Properties in a Model

Note Using the Property Proving pane, you can optionally specify
values for other parameters that control how the Simulink Design Verifier
software proves properties of your model. See “Property Proving Pane”
on page 6-12 for more information.

4 Save your example.mdl model for use in the next task.

Analyzing the Example Model
In this task, you execute the Simulink Design Verifier analysis. The software
proves a property of your example model and produces results for you to
interpret. To complete this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Prove
Properties.

The Simulink Design Verifier software begins analyzing your model to
prove its properties. During its analysis, the software displays a log
window.

8-15

8 Proving Properties of a Model

The Simulink Design Verifier log window updates you on the progress of
the proof, providing information such as the number of objectives processed
and how many of those objectives were either satisfied or falsified. Also,
this dialog box includes a Stop button that you can click to terminate the
proof at any time.

When the Simulink Design Verifier software completes its analysis, it
displays the following items:

8-16

Proving Properties in a Model

• Simulink Design Verifier report — an HTML report named
example_report.html.

• Test harness — a harness model named example_harness.mdl.

• Signal Builder dialog box — Signals that falsify the proof objective in
this model.

The remaining steps in this section help you interpret the results that
you obtained.

2 Review the Simulink Design Verifier report. The report includes the
following Table of Contents whose items you can click to navigate to
particular chapters and sections.

3 In the Table of Contents, click Summary.

8-17

8 Proving Properties of a Model

The Summary provides an overview of the analysis results, and it indicates
that the Simulink Design Verifier software identified a counterexample
that falsifies an objective in your model.

4 Scroll back to the top of the browser window. In the Table of Contents,
click Proof Objectives Status.

The Objectives Falsified with Counterexamples table lists the proof
objectives that the Simulink Design Verifier software disproved using
a counterexample it generated. You can locate the objective in your
model window by clicking Proof Objective; the software highlights the
corresponding Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table under the
Counterexample column, click 1.

8-18

Proving Properties in a Model

This section displays information about proof objective 1 and provides
details about the counterexample that the Simulink Design Verifier
software generated to disprove that objective. In this counterexample, a
signal value of 99 falsifies the objective that you specified using the Proof
Objective block. That is, 99 is not less than or equal to 0, which causes the
Compare To Zero block to return 0 (false) instead of 1 (true).

6 Review the harness model named example_harness.mdl.

The harness model contains the following items:

• Signal Builder block named Inputs — A group of signals that falsify
proof objectives.

• Subsystem block named Test Unit— A copy of your model.

• DocBlock named Test Case Explanation— A textual description of the
counterexamples that the software generates.

8-19

8 Proving Properties of a Model

Note See the Simulink Reference for more information about interacting
with blocks such as the Signal Builder, Subsystem, and DocBlock.

You can simulate the harness model to observe the counterexample that
falsifies the proof objective in your model:

7 In the MATLAB Command Window, enter simulink to open the Simulink
library.

8 From the Sinks library, copy a Scope block into your harness model
window. The Scope block allows you to see the value of the signal output by
the Compare To Zero block in your model.

9 In your harness model window, connect the output signal of the Test Unit
subsystem to the Scope block.

Your model should appear similar to the following:

8-20

Proving Properties in a Model

10 In your harness model window, select Simulation > Start to begin the
simulation.

The Simulink software simulates the harness model.

11 In your harness model window, double-click the Scope block to open its
display window.

The Scope block displays the value of the signal output by the Compare To
Zero block in your model. In this example, the Compare To Zero block
returns 0 (false) throughout the simulation. Recall that you specified that
the proof objective in your model is 1 (true). Hence, the counterexample
that the Signal Builder block supplies falsifies the proof objective.

Customizing the Example Proof
In this task, you modify the simple Simulink model whose proof objective the
Simulink Design Verifier software disproved in the previous task. Specifically,
you customize the proof by adding and configuring a Proof Assumption block.
To complete this task, perform the following steps:

8-21

8 Proving Properties of a Model

1 If the Simulink Design Verifier library is not already open, type sldvlib in
the MATLAB Command Window.

The Simulink Design Verifier library appears.

2 Copy the Proof Assumption block to your model (example.mdl) by dragging
it from the Simulink Design Verifier library to your model window.

3 In your model window, insert the Proof Assumption block between the
Inport and Compare To Zero blocks.

4 Double-click the Proof Assumption block in your model to access its
attributes.

The Proof Assumption block parameter dialog box appears.

5 In the Values box, enter [-1, 0]. When proving properties of this model,
the Simulink Design Verifier software will constrain the signal values
entering the Compare To Zero block to the specified interval.

8-22

Proving Properties in a Model

6 Click Apply and OK to apply your changes and close the Proof Assumption
block parameter dialog box.

7 Save your example.mdl model for use in the next task.

Simulink Design Verifier blocks are preserved with a model, even if you open
the model on a MATLAB installation that does not have a Simulink Design
Verifier license. If you then open the model on a system with a Simulink
Design Verifier license, the software can analyze the model with the blocks
and options that you originally added to the model.

8-23

8 Proving Properties of a Model

Reanalyzing the Example Model
In this task, you execute the Simulink Design Verifier analysis on the model
that you modified. To observe how Proof Assumption blocks affect proofs,
compare the result of this analysis to the result that you obtained in a
previous task. To complete this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Prove
Properties.

The Simulink Design Verifier software displays a log window and begins
analyzing your model to prove its properties.

When the software completes the analysis, it displays a new Simulink
Design Verifier report named example_report1.html.

Note If the Simulink Design Verifier software satisfies all proof objectives
in your model, it does not generate a harness model.

2 Review the Simulink Design Verifier report.

3 In the Table of Contents, click Summary.

The Summary chapter of indicates that the Simulink Design Verifier
software proved an objective in your model.

8-24

Proving Properties in a Model

4 Scroll back to the top of the browser window. In the Table of Contents,
click Proof Objectives Status.

The Objectives Proven Valid table lists the proof objectives that the
Simulink Design Verifier software proved to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser
window and click Properties in the Table of Contents.

The Proof Objective summary indicates that the Simulink Design Verifier
software proved an objective that you specified in your model. Because the
Proof Assumption block restricted the domain of the input signals to the
interval [-1, 0], the software was able to prove that this interval contains no
values that are greater than zero, thereby satisfying the proof objective.

Analyzing Contradictory Models
If the analysis produces the error The model is contradictory in its
current configuration, the software detected a contradiction in your model
and it cannot analyze the model. You can have a contradiction if your model
has Proof Assumption blocks with incorrect parameters, for example, an
asosumption that states that a signal has to be between 0 and 5 when the
signal is constant 10.

8-25

8 Proving Properties of a Model

If the software detects a contradiction, all previous results are invalidated
and the software reports that all the properties are falsified.

8-26

Proving Properties in a Subsystem

Proving Properties in a Subsystem
If you have a large model, you can prove the properties of a subsystem in the
model and review the analyses in smaller, manageable reports. The workflow
for proving properties in a subsystem is as follows:

1 Open the model that contains the subsystem.

2 Make the subsystem atomic.

3 Run the Simulink Design Verifier software using the Prove Properties of
Subsystem option.

4 Review the results.

The tutorial in “Analyzing a Subsystem” on page 1-26 explains how to
generate test cases for the Controller subsystem in the Cruise Control Test
Generation model. The steps for proving properties are similar, except
that you select the Prove Properties of Subsystem option instead of the
Generate Tests for Subsystem option.

8-27

8 Proving Properties of a Model

Proving Complex Properties

Property-Proving Examples
The Simulink Design Verifier block library includes four Simulink examples
that allow you to prove complex properties:

• “Conditions that Trigger a Result” on page 8-30

• “Conditions That Cannot Be True Simultaneously” on page 8-31

• “Increasing or Decreasing Signals” on page 8-31

• “Conditions with One True Element” on page 8-32

The workflow for using these examples in your model is:

1 Copy these examples into your verification subsystem.

2 Adapt them, if necessary, for the specific properties you are trying to prove.

3 Run the Simulink Design Verifier analysis to prove the assertions in these
examples never fail.

4 If the assertion fails, the software looks for a counterexample that causes
the assertion to fail and generates a harness model.

5 Execute the counterexample on the harness model to confirm that the
assertion fails with that counterexample.

To view these examples:

1 Open the block library. Type:

sldvlib

8-28

Proving Complex Properties

2 Double-click Property Examples to open the examples.

8-29

8 Proving Properties of a Model

Conditions that Trigger a Result
The Simulink Design Verifier Implies block allows you to test for conditions
that trigger a result. This example specifies that if condition A is true, result B
must always be true.

8-30

Proving Complex Properties

Conditions That Cannot Be True Simultaneously
This example specifies that the four inputs must never all be true at the same
time.

Increasing or Decreasing Signals
The two examples in this section specify that a signal is either:

8-31

8 Proving Properties of a Model

• Always increasing or staying constant

• Always decreasing or staying constant

Conditions with One True Element
This example specifies that only one of the four input signals can be true.

8-32

9

Reviewing the Results

The Simulink Design Verifier software produces several artifacts after it
analyzes your model. Depending on the analysis, the software can generate a
data file, a test harness model, a SystemTest file, and a report. The following
sections describe each of these items:

• “Examining Simulink® Design Verifier Data Files” on page 9-2

• “Exploring Test Harness Models” on page 9-8

• “Creating a SystemTest TEST-File” on page 9-15

• “Understanding Simulink® Design Verifier Reports” on page 9-18

9 Reviewing the Results

Examining Simulink Design Verifier Data Files

In this section...

“About Simulink® Design Verifier Data Files” on page 9-2
“Overview of the sldvData Structure” on page 9-2
“Model Information Fields in sldvData” on page 9-3
“Simulating Models with Simulink® Design Verifier Data Files” on page 9-7

About Simulink Design Verifier Data Files
When you enable the Save test data to file parameter (see “Results Pane” on
page 6-14), the Simulink Design Verifier software generates a data file when
it completes its analysis. The data file is a MAT-file that contains a structure
named sldvData. This structure stores all the data the software gathers and
produces during the analysis. Although the software displays the same data
graphically in the test harness model and report, you can use the data file to
conduct your own analysis or to generate a custom report.

Overview of the sldvData Structure
When the Simulink Design Verifier software completes its analysis, it
produces a MAT-file that contains a structure named sldvData. To explore
the contents of the sldvData structure:

1 Generate test cases for the sldvdemo_flipflop model (see “Analyzing a
Model” on page 1-6).

2 To load the data file, at the MATLAB prompt, enter the following command:

load('sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace.
This structure contains the Simulink Design Verifier analysis results of the
sldvdemo_flipflop model.

3 Enter sldvData to display the field names that constitute the structure:

sldvData =

9-2

Examining Simulink® Design Verifier™ Data Files

ModelInformation: [1x1 struct]
AnalysisInformation: [1x1 struct]

ModelObjects: [1x2 struct]
Objectives: [1x12 struct]
TestCases: [1x4 struct]

Version: '1.4'

See “Structures” in the MATLAB documentation for more information
about working with structures.

Model Information Fields in sldvData
The following sections describe the fields in the sldvData structure:

• “ModelInformation Field” on page 9-3

• “AnalysisInformation Field” on page 9-4

• “ModelObjects Field” on page 9-4

• “Objectives Field” on page 9-5

• “TestCases Field / CounterExamples Field” on page 9-5

• “Version Field” on page 9-7

ModelInformation Field
In the sldvData structure, the ModelInformation field contains information
about the model you analyzed. The following table describes each subfield of
the ModelInformation field.

Subfield Name Description

Name String specifying the model name.
Version String specifying the model number.
Author String specifying the user name.
SubsystemPath String representing the full path name of the

subsystem (if any) that was analyzed.
ReplacementModel String specifying the name of the model (if any) that

contains the block replacements.

9-3

9 Reviewing the Results

AnalysisInformation Field
In the sldvData structure, the AnalysisInformation field lists settings of
particular analysis options and related information. The following table
describes each subfield of the AnalysisInformation field.

Subfield Name Description

Status String specifying the completion status of the
Simulink Design Verifier analysis.

Options Deep copy of the Simulink Design Verifier options
object used during the analysis.

InputPortInfo Cell array of structures specifying information about
each Inport block in the top-level system.

OutputPortInfo Cell array of structures specifying information about
each Outport block in the top-level system.

SampleTimes For internal use only.

ModelObjects Field
In the sldvData structure, the ModelObjects field lists the model items and
their associated objectives. The following table describes each subfield of
the ModelObjects field.

Subfield Name Description

descr String specifying the full path to a model object,
including objects in a Stateflow chart.

typeDesc String specifies the block type of the model object.
slPath String specifying the full path to a Simulink model

object.
sfObjType String specifying the type of a Stateflow object, e.g., S

for state and T for transition.
sfObjNum Integer representing the unique identifier of a

Stateflow object.
objectives Vector of integers representing the indices of objectives

associated with a model object.

9-4

Examining Simulink® Design Verifier™ Data Files

Objectives Field
In the sldvData structure, the Objectives field lists information about
each objective, such as its type, status, and description. The following table
describes each subfield of the Objectives field.

Subfield Name Description

type String specifying the type of an objective.
status String specifying the status of an objective.
descr String specifying the description of an objective.
label String specifying the label of an objective.
outcomeValue Integer specifying an objective’s outcome.
coveragePointIdx Integer representing the index of a coverage point

with which an objective is associated.
modelObjectIdx Integer representing the index of a model object with

which an objective is associated.
testCaseIdx Integer representing the index of a test case or

counterexample that addresses an objective.

TestCases Field / CounterExamples Field
In the sldvData structure, this field can have two names, depending on the
type of check:

• If you set the Mode parameter to Test generation, the TestCases field
lists information about each test case, such as its signal values and the
test objectives it achieves.

• If you set theMode parameter to Property proving, the CounterExamples
field lists information about each counterexample and the proof objective it
falsifies.

The following table describes each subfield of the TestCases /
CounterExamples field.

9-5

9 Reviewing the Results

Subfield Name Description

timeValues Vector specifying the time values associated with
signals in a test case or counterexample.

dataValues Cell array specifying the data values associated with
signals in a test case or counterexample.

paramValues Structure specifying the parameter values associated
with a test case or counterexample. Its fields include:

name— String specifying the name of a parameter.

value— Number specifying the value of a parameter.

noEffect — Logical value specifying whether a
parameter’s value affects an objective.

stepValues Vector specifying the number of time steps that
comprise signals in a test case or counterexample.

objectives Structure specifying objectives that a test case or a
counterexample addresses. Its fields include:

objectiveIdx— Integer representing the index of an
objective that a test case achieves or a counterexample
falsifies.

atTime — Time value at which either a test case
achieves an objective or a counterexample falsifies an
objective.

atStep — Time step at which either a test case
achieves an objective or a counterexample falsifies an
objective.

9-6

Examining Simulink® Design Verifier™ Data Files

Subfield Name Description

dataNoEffect Cell array of logical vectors specifying whether a
signal’s data values affect an objective. The vector
uses 1 to indicate that a signal’s data value does not
affect an objective; otherwise, it uses 0.

expectedOutput Cell array of vectors specifying the output values
that result from simulating the model using the
test case signals. Each cell represents the output
values associated with a different Outport block in
the top-level system. This subfield is populated if you
select Include expected output values.

Version Field
In the sldvData structure, the Version field is a string specifying the version
of the Simulink Design Verifier software that verified the model.

Simulating Models with Simulink Design Verifier
Data Files
The sldvruntest function simulates a model using test cases or
counterexamples that reside in a Simulink Design Verifier data file. For
example, suppose the following command specifies the location of the data
file that the Simulink Design Verifier software produced after analyzing the
sldvdemo_flipflop model (see “Analyzing a Model” on page 1-6):

sldvDataFile = 'sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'

Use the sldvruntest function to simulate the sldvdemo_flipflop model
using test case 2 in the data file:

output = sldvruntest('sldvdemo_flipflop', sldvDataFile, 2)

For more information, see the sldvruntest reference page.

9-7

9 Reviewing the Results

Exploring Test Harness Models

In this section...

“About Test Harness Models” on page 9-8
“Anatomy of a Test Harness” on page 9-8
“Configuration of the Test Harness” on page 9-13
“Simulating the Test Harness” on page 9-13

About Test Harness Models
When you enable the Save test harness as model parameter (see “Results
Pane” on page 6-14), the Simulink Design Verifier software generates a
test harness model after it completes its analysis. If the software’s Mode
parameter specifies Test generation, the harness model contains test cases
that achieve test objectives. Otherwise, the software’s Mode parameter
specifies Property proving and the harness model contains counterexamples
that falsify proof objectives.

Note The Simulink Design Verifier software can generate a harness model
only when the top level of the system you are analyzing contains an Inport
block.

Anatomy of a Test Harness
When the Simulink Design Verifier software completes its analysis, it
produces a test harness model that looks like this:

9-8

Exploring Test Harness Models

The harness model contains the following items:

• Test Case Explanation— This DocBlock block documents the test cases
or counterexamples that the Simulink Design Verifier software generates.
Double-click the Test Case Explanation block to view a description of each
test case or counterexample. The block lists either the test objectives that
each test case achieves (as in the next graphic) or the proof objectives that
each counterexample falsifies.

9-9

9 Reviewing the Results

• Inputs — This Signal Builder block contains signals that comprise the
test cases or counterexamples that the Simulink Design Verifier software
generated. Double-click the Inputs block to open the Signal Builder dialog
box and view its signals. The following Signal Builder block shows the
signals for Test Case 8 after analyzing the sldvdemo_cruise_control
model with the default options.

Each signal group represents a unique test case or counterexample. In the
Signal Builder dialog box, select a tab to view the signals associated with a
particular test case or counterexample.

9-10

Exploring Test Harness Models

If you select the Long test cases option of the Test suite optimization
parameter, the analysis creates fewer, longer test cases. For example, if
you select the Long test cases option for the sldvdemo_cruise_control
model, the analysis produces 1 long test case instead of 10 shorter test
cases. The following Signal Builder dialog box shows the signals for that
test case.

9-11

9 Reviewing the Results

Note For more information about the Signal Builder dialog box, see
“Working with Signal Groups” in Simulink User’s Guide.

• Size-Type — This Subsystem block transmits signals from the Inputs
block to the Test Unit block. It ensures that the signals are of the
appropriate size and data type, which the Test Unit block expects.

9-12

Exploring Test Harness Models

• Test Unit — This Subsystem block contains a copy of the original model
that the Simulink Design Verifier software analyzed.

Configuration of the Test Harness
After the Simulink Design Verifier software generates the test harness, it has
the following settings:

• The test harness start time is always 0. If the original model uses a nonzero
start time, the software ignores this and always uses 0 for the simulation
start time for test cases and counterexamples.

• The test harness stop time always equals the stop time of the longest test
case in the Signal Builder dialog box.

• By default, the software enables coverage reporting for test harness models
that contain test cases. Although it enables coverage reporting with
particular options selected, you can customize the settings to meet your
needs. For more information, see “Model Coverage Reporting Options” in
the Simulink Verification and Validation User’s Guide.

Simulating the Test Harness
The test harness model enables you to simulate a copy of your original model
using the test cases or counterexamples that the Simulink Design Verifier
software generates. Using the test harness model, you can simulate:

• A counterexample

• A single test case, for which the Simulink Verification and Validation
software collects and displays model coverage information

• All test cases, for which the Simulink Verification and Validation software
collects and displays cumulative model coverage information

To simulate a single test case or counterexample:

1 In the test harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

2 In the Signal Builder dialog box, select the tab associated with a particular
test case or counterexample.

9-13

9 Reviewing the Results

The Signal Builder dialog displays the signals that comprise the selected
test case or counterexample.

3 In the Signal Builder dialog box, click the Start simulation button .

The Simulink software simulates the test harness model using the signals
associated with the selected test case or counterexample. When simulating
a test case, the Simulink Verification and Validation software collects
model coverage information and displays a coverage report.

To simulate all test cases and measure their combined model coverage:

1 In the test harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

2 In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness model using all test
cases, while the Simulink Verification and Validation software collects
model coverage information and displays a coverage report.

When you click Run all, the software simulates all the test cases using the
stop time for the test harness model. The stop time equals the stop time
for the longest test case, so you may accumulate additional coverage when
you simulate the shorter test cases.

See “Simulating with Signal Groups” in Simulink User’s Guide for more
information about simulating models containing Signal Builder blocks.

9-14

Creating a SystemTest™ TEST-File

Creating a SystemTest TEST-File
If you have installed the SystemTest software with your MATLAB
application, you can specify that the Simulink Design Verifier software create
a SystemTest TEST-file when it analyzes a model. Creating a TEST-file
allows you to configure and collect model coverage results and run the test
cases from inside the SystemTest environment.

Note The option to create a SystemTest TEST-file is only available
in test-generation mode; you cannot create this file when running a
property-proving analysis.

In addition, if you have a model with a large number of inputs, this feature
eliminates the overhead of creating the test harness. However, you can create
both a test harness and a TEST-file in the same analysis.

To create a TEST-file for the sldvdemo_cruise_control model, perform
these steps:

1 Type sldvdemo_cruise_control at the MATLAB command prompt to
open the Cruise Control Test Generation model.

2 Select Simulation > Configuration Parameters to open the
Configuration Parameters dialog box.

3 In the Select pane, under Design Verifier, select Results.

4 On the Results pane, under SystemTest options, select Save test
harness as SystemTest TEST-file (will reference saved data file).

5 If you prefer a file name other than the default, specify the SystemTest
file name.

9-15

9 Reviewing the Results

6 Under Data File options, verify that Save test data to file is selected.
You must select this option to generate a TEST-file.

7 If you do not need the Simulink Design Verifier test harness in addition to
the TEST-file, under Harness model options, clear Save text harness
as model.

8 Click Apply and OK to save the changes and exit the Configuration
Parameters dialog box.

9 Double-click the Run block in the sldvdemo_cruise_control model to
start the analysis.

When the software is creating the TEST-file, the following status box
appears.

When the analysis completes, the SystemTest desktop opens the TEST-file,
which, for this example, is saved as

9-16

Creating a SystemTest™ TEST-File

matlabroot\sldvdemo_output\sldv_cruise_control\sldvdemo_cruise_control_harness.test

In the Test Browser pane, the 10 iterations under Main Test correspond
to the 10 test cases the Simulink Design Verifier software generates and
describes in the Test Case Explanation block of the test harness.

For information about running the test cases using the SystemTest software,
see “Creating a Simulink Design Verifier Data File Test Vector” in the
SystemTest User’s Guide.

9-17

9 Reviewing the Results

Understanding Simulink Design Verifier Reports

In this section...

“About Simulink® Design Verifier Reports” on page 9-18
“Front Matter” on page 9-18
“Summary Chapter” on page 9-19
“Analysis Information Chapter” on page 9-20
“Test / Proof Objectives Status Chapter” on page 9-25
“Model Items Chapter” on page 9-29
“Test Cases / Properties Chapter” on page 9-29

About Simulink Design Verifier Reports
When you enable the Generate report of the results parameter (see
“Report Pane” on page 6-17), the Simulink Design Verifier software generates
an HTML report after it completes its analysis. If the software’s Mode
parameter specifies Test generation, the report describes the model’s test
objectives and any corresponding test cases that result from the analysis.
Otherwise, the software’sMode parameter specifies Property proving, and
the report describes the model’s proof objectives and any counterexamples
that result from the analysis.

Front Matter
The report begins with two sections: title and table of contents.

9-18

Understanding Simulink® Design Verifier™ Reports

The title section lists the following information:

• Model or subsystem name the Simulink Design Verifier software analyzed

• User name associated with the current MATLAB session

• Date and time that the Simulink Design Verifier software generated the
report

The table of contents follows the title section. Clicking items in the table of
contents allows you to navigate quickly to particular chapters and sections.

Summary Chapter
The Summary chapter of the HTML report provides an overview of the
Simulink Design Verifier analysis.

9-19

9 Reviewing the Results

Analysis Information Chapter
The Analysis Information chapter of the HTML report includes the following
sections:

• “Model Information” on page 9-20

• “Analysis Options” on page 9-21

• “Unsupported Blocks” on page 9-22

• “Constraints” on page 9-22

• “Block Replacements Summary” on page 9-23

• “Approximations” on page 9-24

Model Information
The Model Information section provides the following information about the
current version of the model:

• Path and file name of the model that the Simulink Design Verifier software
analyzed

• Model version

• Date and time that the model was last saved

• Name of the person who last saved the model

9-20

Understanding Simulink® Design Verifier™ Reports

See “Managing Model Versions” in Simulink User’s Guide for details about
specifying this information for your models.

Analysis Options
The Analysis Options section provides information about the Simulink Design
Verifier analysis settings.

The Analysis Options section lists the parameters that affected the Simulink
Design Verifier analysis. See “sldvoptions Object Parameters” on page 11-11
for more information about the parameters that this section displays.

9-21

9 Reviewing the Results

Unsupported Blocks
If your model includes unsupported elements, you can turn on automatic
stubbing to allow the analysis to proceed. If you turn on automatic stubbing,
the software considers only the interface of the unsupported elements, not
their actual behavior. This technique allows the software to complete the
analysis. However, the analysis may achieve only partial results if any of the
unsupported model elements affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed any
unsupported elements; it lists the unsupported elements in a table, with
a link to the element in the model.

For more information about automatic stubbing, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-6.

Constraints
The Constraints section provides information about any test conditions that
the Simulink Design Verifier software applied when it analyzed a model.

You can locate the constraint in your model by clicking constraint; the
software highlights the corresponding Test Condition block in your model
window and opens a new window showing the block in detail.

9-22

Understanding Simulink® Design Verifier™ Reports

Block Replacements Summary
The Block Replacements Summary provides an overview of the block
replacements that the Simulink Design Verifier software executed. It appears
only if the Simulink Design Verifier software replaced any blocks in a model.

Each row of the table corresponds to a particular block replacement rule that
the Simulink Design Verifier software applied to the model. The table lists
the following:

• Name of the M-file that represents the block replacement rule and the
value of the BlockType parameter the rule specifies

• Description of the rule that the MaskDescription parameter of the
replacement block specifies

• Names of any blocks that the Simulink Design Verifier software replaced
in the model

To locate a particular block replacement in your model, click on the name for
that replacement in the Replaced Blocks column of the table; the software
highlights the affected block in your model window and opens a new window
that displays the block in detail.

9-23

9 Reviewing the Results

See Chapter 4, “Working with Block Replacements” for more information.

Approximations
Each row of the Approximations table describes a specific type of
approximation that the Simulink Design Verifier software used during its
analysis of the model.

9-24

Understanding Simulink® Design Verifier™ Reports

Note Review the analysis results carefully when the software uses
approximations. In rare cases, an approximation may result in test cases that
fail to achieve test objectives or counterexamples that fail to falsify proof
objectives. For example, a floating-point-roundoff error might prevent a signal
from exceeding a designated threshold value.

Test / Proof Objectives Status Chapter
The Test / Proof Objectives Status chapter of the HTML report summarizes
all test or proof objectives in a model, including an objective’s type, the model
item to which it corresponds, and its description. This chapter displays each
objective in one of the following tables associated with the objective’s status:

• Objectives Undecided — Lists the test or proof objectives for which the
Simulink Design Verifier software was unable to determine an outcome in
the allotted time. In this property-proving example, either the software
exceeded its analysis time limit (which the Maximum analysis time
parameter specifies), or you aborted the analysis before it completed
processing these objectives.

9-25

9 Reviewing the Results

• Objectives Producing Errors — Lists the test or proof objectives for
which the Simulink Design Verifier software encountered errors during its
analysis. In this example, analyzing these objectives involves nonlinear
arithmetic, which the software does not support. Thus, errors occur and
appear in the report.

If the Simulink Design Verifier software’s Mode parameter specifies Test
generation, the Status section also includes the following tables:

• Objectives Proven Unsatisfiable — Lists the test objectives that the
Simulink Design Verifier software determined could not be satisfied. In
this example, the software found that there are no test cases that achieve
these objectives.

9-26

Understanding Simulink® Design Verifier™ Reports

• Objectives Satisfied — Lists test objectives that the Simulink Design
Verifier software satisfied. In this example, the software generated test
cases that achieve the specified objectives.

• Objectives Satisfied - No Test Case — Lists test objectives that the
Simulink Design Verifier software satisfied without generating test cases.

9-27

9 Reviewing the Results

If the Simulink Design Verifier software’s Mode parameter specifies
Property proving, the Status section includes:

• Objectives Proven Valid— Lists the proof objectives that the Simulink
Design Verifier software proved valid.

• Objectives Falsified with Counterexamples — Lists the proof
objectives that the Simulink Design Verifier software disproved. In this
example, the software generated at least one counterexample that falsifies
the specified objectives.

• Objectives Falsified - No Counterexample— Lists the proof objectives
that the Simulink Design Verifier software disproved without generating
counterexamples. this occurs if, for example, you specified a proof objective
on a signal whose value the software cannot control, or the software
encountered a divide-by-zero error when instantiating a counterexample.

9-28

Understanding Simulink® Design Verifier™ Reports

Model Items Chapter
The Model Items chapter of the HTML report includes a table for each object
in the model that defines coverage objectives. The table for a particular object
lists all of the associated objectives, the objective types, objective descriptions,
and the status of each objective at the end of the analysis.

The table for an individual object in the model will look similar to this one
for the TK switch in the Roll Reference subsystem.

To highlight a given object in your model, click View at the upper-left corner of
the table; the software opens a new window that displays the object in detail.
To view the details of the test case that was applied to a specific objective,
click the test case number in the last column of the table.

Test Cases / Properties Chapter
The Test Cases / Counterexamples chapter of the HTML report provides an
overview of the test cases or counterexamples that the Simulink Design

9-29

9 Reviewing the Results

Verifier software generated during its analysis. Depending on whether
the software’s Mode parameter specifies Test generation or Property
proving, this chapter includes sections associated with the following:

• “Test Cases” on page 9-30

• “Properties” on page 9-35

Test Cases
If the Simulink Design Verifier software’s Mode parameter specifies Test
generation, the report’s Test Cases chapter includes sections that summarize
the test cases the analysis generated, one per test case.

9-30

Understanding Simulink® Design Verifier™ Reports

Each section lists the following information about a test case:

• Length of the signals that comprise the test case

• Total number of test objectives that the test case achieves

• Time step and corresponding time at which the test case achieves particular
test objectives, indicated as a range if the signal value does not change
over those time steps

• Values of the signals that comprise the test case

9-31

9 Reviewing the Results

Note The Generated Input Data table can display a dash (–) instead of a
number as a signal value. In this case, the value of the signal at that time
step does not affect the test objective. In the test harness model, the Inputs
block represents these values with zeros unless you enable the Randomize
data that does not affect outcome parameter (see “Randomize data that
does not affect outcome” on page 6-15).

If you set the Test suite optimization option to Combined objectives
(the default), the Test Cases chapter in the report may include individual
information about many test cases.

9-32

Understanding Simulink® Design Verifier™ Reports

If you set the Test suite optimization option to Long test cases, the Test
Cases chapter in the report includes fewer sections about the longer test cases.

9-33

9 Reviewing the Results

9-34

Understanding Simulink® Design Verifier™ Reports

Properties
If the Simulink Design Verifier software’s Mode parameter specifies
Property proving, the report’s Properties chapter includes a series of
sections that summarize the proof objectives and any counterexamples the
software generated.

If the software proves an objective is valid, this report chapter displays a
summary section similar to this one.

If the software falsifies an objective, this report chapter has a summary
section similar to the one in the following figure.

To highlight the proof objective in your model, click the Model Item name in
the Summary section.

9-35

9 Reviewing the Results

9-36

10

Analyzing Large Models
and Improving Performance

• “Sources of Model Complexity” on page 10-2

• “Analyzing a Large Model” on page 10-3

• “Generating Reports for Large Models” on page 10-8

• “Managing Model Data to Simplify the Analysis” on page 10-9

• “Partitioning Model Inputs and Generating Tests Incrementally” on page
10-13

• “Analyzing the Model Using a Bottom-Up Approach” on page 10-15

• “Analyzing Logical Operations” on page 10-16

• “Handling Models with Large State Spaces” on page 10-17

• “Handling Problems with Counters and Timers” on page 10-18

• “Techniques for Proving Properties of Large Models” on page 10-20

10 Analyzing Large Models and Improving Performance

Sources of Model Complexity
Some model characteristics can cause problems with a Simulink Design
Verifier analysis in the following ways:

• Complexity of model inputs due to:

- Large number of inputs (The number of inputs can vary, depending
on the individual model.)

- Types of inputs (floating-point values, for example)

- The way the inputs affect the model state and the objectives of the
analysis

• Number of possible simulation paths through a model

• Portions of the model that cannot be reached

• Large signal count in the model

The following sections describe techniques designed to reduce the impact of
this complexity and achieve the best performance from the Simulink Design
Verifier software.

Most of these techniques focus on test generation for large models, but you
can use many of them to prove the properties of a large model and generate
counterexamples when a property is disproved. In addition, “Techniques
for Proving Properties of Large Models” on page 10-20 describes specific
techniques for proving properties in a large model.

10-2

Analyzing a Large Model

Analyzing a Large Model

In this section...

“Types of Large Model Problems” on page 10-3
“Using the Default Parameter Values” on page 10-4
“Modifying the Analysis Parameters” on page 10-5
“Using the Large Model Optimization” on page 10-6
“Stopping the Analysis Before Completion” on page 10-6

Types of Large Model Problems
The Simulink Design Verifier software may encounter some of these problems
when analyzing a large model:

• Unsatisfiable objectives — The software proved there are no test cases that
exercise these test objectives, and thus did not generate any test cases.

• Undecided objectives — The software was not able to satisfy or falsify
these objectives.

• Objectives with errors — The most common error occurs when a model
component uses nonlinear arithmetic, which can affect a test objective.

• Cannot complete the analysis in the time allotted — This problem may
indicate an area of your model where the software encountered problems,
or you may need to increase value of the Maximum analysis time
parameter.

• Analysis hangs — If the number of objectives processed remains constant
for a considerable length of time, the software has likely encountered
complexity between the model and its objectives.

• Does not achieve a high percentage of model coverage — When you ran
the test cases on the test harness, the percentage of model coverage was
insufficient for your design.

The next few sections describe the initial steps to take when analyzing a large
model. Although these steps address test generation, you can use a similar
approach when proving properties in a model.

10-3

10 Analyzing Large Models and Improving Performance

Using the Default Parameter Values
When you generate test cases for a model, whether large or small, the first
step is to analyze the model using the Simulink Design Verifier default
parameter values:

1 Check to see if your model is compatible with the Simulink Design Verifier
software, as described in Chapter 3, “Ensuring Compatibility with the
Simulink® Design Verifier Software”.

2 Using the default parameter values, analyze the model. The following table
lists three of the default parameter values.

Parameter Default Value Description

Maximum
analysis time

600 (seconds) If the analysis does not
finish within the specified
time, the analysis times out
and terminates.

Test suite
optimization

Combined
objectives

Generates test cases that
address more than one test
objective (if possible).

Model coverage
objectives

MCDC Generates test cases
that achieve modified
condition/decision coverage
(MCDC), which includes
decision coverage (DC) and
condition coverage (CC).nc

3 Review the following information in the Simulink Design Verifier log
window while the analysis runs:

• Number of objectives processed — How many objectives were processed?
Did the analysis hang after processing a certain number of objectives?
The answers to these questions might give you a clue about where a
problem might lie.

• Number of objectives satisfied/Number of objectives falsified — Which
objectives were falsified?

10-4

Analyzing a Large Model

• Time elapsed — Did the analysis time out, or did it finish within the
specified maximum analysis time?

4 When the analysis completes, review the Simulink Design Verifier report.
This report contains links to the model elements for satisfied and falsified
objectives so you can see what portions of the model might have problems.

5 If all the test objectives have been satisfied, run the test cases on the test
harness to determine model coverage.

If model coverage is sufficient, you do not need to do anything else. If the
coverage is not sufficient, take additional steps to improve the analysis
performance, as described in the following sections.

Note A large percentage of falsified objectives and poor model coverage often
indicates that you need to change model parameter values to get complete
coverage. This occurs when you have tunable parameters in Constant blocks
that are connected to enabled subsystems or the trigger input of Switch
blocks. In these situations, configure Simulink Design Verifier parameter
support as described in Chapter 5, “Specifying Parameter Configurations”.

Modifying the Analysis Parameters
If the analysis satisfied most but not all of the objectives, try the following
steps:

1 Increase theMaximum analysis time parameter. Such an increase gives
the analysis more time to satisfy all the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting
this option generates only test cases that achieve decision coverage. These
test cases are a subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are not satisfactory, try the techniques described in the
following sections.

10-5

10 Analyzing Large Models and Improving Performance

Using the Large Model Optimization
Set the Test suite optimization parameter to Large model, and rerun the
Simulink Design Verifier analysis.

The large model optimization strategy is designed for large, complex models.
It may or may not improve the results of your analysis enough to fully test
your design.

If there are outstanding test cases you want the software to generate,
or additional properties you need to prove, continue with the following
techniques.

Stopping the Analysis Before Completion
Watch the Objectives processed value in the log window. If about 50
percent of the Maximum analysis time parameter has elapsed and this
value does not increase, the model analysis may have trouble processing
certain objectives. If the analysis does not progress, take the following steps:

1 Click Stop in the log window.

The following dialog box opens.

2 Click Yes to save the results.

The software creates a test harness and an HTML report.

3 Review the results. In the HTML report, review the Objectives
Undecided when the Analysis was Stopped and Objectives
Producing Errors sections to identify the model elements that are
causing problems.

10-6

Analyzing a Large Model

4 Review the model elements that have undecided objectives or objectives
with errors to see if any of the following problems are present. Consult the
respective sections for specific techniques to improve the analysis:

• Floating-point inputs

See “Managing Model Data to Simplify the Analysis” on page 10-9.

• Nonlinear operations

See “Analyzing the Model Using a Bottom-Up Approach” on page 10-15
and “Analyzing Logical Operations” on page 10-16.

• Large state spaces

See “Handling Models with Large State Spaces” on page 10-17.

• Large timers and time delays

See “Handling Problems with Counters and Timers” on page 10-18.

10-7

10 Analyzing Large Models and Improving Performance

Generating Reports for Large Models
When you analyze a model with a large root-level input signal count, you may
encounter an insufficient memory error when the Simulink Design Verifier
software is generating the report.

When this occurs, you need to increase the amount of memory the Sun Java
Virtual Machine (JVM™) software can allocate. For steps on how to increase
this memory, see “Increasing the MATLAB JVM Memory Allocation Limit” in
the MATLAB® Report Generator™ documentation.

10-8

Managing Model Data to Simplify the Analysis

Managing Model Data to Simplify the Analysis

In this section...

“Simplifying Data Types” on page 10-9
“Constraining Data” on page 10-9

Simplifying Data Types
One way to simplify your model is to use for the designated signal data type a
data type requiring the smallest space for the expected data. For example,
do not use an int data type for Boolean data, because only 1 bit is required
for Boolean data.

In another example, suppose you have a Sum block with two inputs that are
always going to be integers between –10 and 10. In this example, set the
Output data type parameter to int8, rather than int32 or double, or any
other data type that requires more space than necessary.

To display the signal data types in the model window, select
Format > Port/Signal Displays > Port Data Types.

Constraining Data
Another effective technique for reducing complexity is to restrict the inputs
to a set of representative values or, ideally, a single constant value. This
process, called discretization, treats the input as if it were an enumeration.
Discretization allows you to handle nonlinear arithmetic from multiplication
and division in the simplest way possible.

The following model has a Product block feeding a Saturation block.

10-9

10 Analyzing Large Models and Improving Performance

The Simulink Design Verifier software generates errors when attempting
to satisfy the upper and lower limits of the Saturation block, because the
software does not support nonlinear arithmetic. To work around these errors,
restrict one of the inputs to a set of discrete values.

Identify discrete values that are required to satisfy your testing needs. For
example, you may have an input for model speed, and your design contains
paths of execution that are conditioned on speed above or below thresholds of
80, 150, 600, and 8000 RPM. For an effective analysis, constrain speed values
to be 50, 100, 200, 1000, 5000, or 10000 RPM so that every threshold can
be either active or inactive.

If you need to use more than two or three values, consider
specifying the constrained values using an expression like
num2cell(minval:increment:maxval).

Using the previous example model, restrict the second input (y) to be either
1, 2, 5, or 10 using the Test Condition block as shown. The Simulink Design
Verifier software produces test cases for all inputs.

10-10

Managing Model Data to Simplify the Analysis

You can also constrain signals that are intermediate or output values
of the model. Constraining such signals makes it easier to work around
multiplication or divisions inside lower-level subsystems that do not depend
on model inputs.

Note Discretization is best limited to a small number of inputs (less than
10). If your model requires discretization of many inputs, try to achieve model
coverage through successive simulations as described in “Partitioning Model
Inputs and Generating Tests Incrementally” on page 10-13.

Test Condition blocks do not need to be placed exactly on the inputs. In
deciding where to place the constraints in your model, consider the following
guidelines:

• Favor constraints on the input values because the software can process
inputs easier.

• If you need to place constraints on both the input and the output, for
example, to avoid nonlinear arithmetic, one of the constraints should be
a range such as [minval maxval]. The software first tests the values at
both ends of the range and can return a test case, even if the underlying
calculations are nonlinear.

• Make sure that constraints at corresponding input and output points are
not contradictory. Do not constrain the output signals to values that are
not achievable because of the constraints on the input values.

10-11

10 Analyzing Large Models and Improving Performance

• Avoid creating constraints that contradict the model. Such contradictions
occur when a constraint can never be satisfied because it contradicts some
aspect of the model or another constraint. Analyzing contradictory models
can cause the Simulink Design Verifier software to hang.

The next figure shows a simple example of a contradictory model. The
second input to the Multiply block is the constant 1, but the Test Condition
block constrains it to a value of 2, 5, or 10. The software cannot achieve
all the test objectives in this model.

• When you work with large models that have many multiplication and
division operations, you may find it easier to add constraints to all of the
floating-point inputs rather than to identify the precise set of inputs that
require constraints.

10-12

Partitioning Model Inputs and Generating Tests Incrementally

Partitioning Model Inputs and Generating Tests
Incrementally

As described in “Constraining Data” on page 10-9, you can constrain the values
of model inputs using the Simulink Design Verifier Test Condition block.

Like other Simulink parameters, constraint values can be shared across
several blocks by referencing a common workspace variable, and they can be
initialized from M-files. If you have several inputs related to speed, such
as desired speed, measured speed, and average speed, you might choose to
constrain all of them to the same set of values.

As an advanced technique for experienced MATLAB programmers, you can
use parameterized constraints and successive runs of the Simulink Design
Verifier software to implement an incremental test-generation technique:

1 Partition model inputs so that some are held constant, some are constrained
to sets of constants using the Test Condition block, and some are free.

2 Generate test cases and run those test cases to collect model coverage.

3 Choose new values and partition the inputs with these new values.

4 Generate test cases for missing coverage using sldvgencov and the current
test coverage.

Note The Extending an Existing Test Suite demo shows how to extend a
test suite so that it satisfies missing model coverage.

5 Repeat steps 3 and 4 until you have generated sufficient coverage.

Partition the model inputs that enable further simplification when an analysis
runs. Consider the following model, which has three mutually independent
enabled subsystems—Normal Mode, Shutdown Mode, and Failure Mode.

10-13

10 Analyzing Large Models and Improving Performance

You can incrementally generate test cases for each subsystem by constraining
the first input to the appropriate constant value before running an analysis.
In this way, as you create test cases for each subsystem, the software ignores
the complexity of the other two subsystems.

10-14

Analyzing the Model Using a Bottom-Up Approach

Analyzing the Model Using a Bottom-Up Approach
Simulink Design Verifier software works most effectively at analyzing large
models using a bottom-up approach. In this approach, the software analyzes
smaller model components first, which can be faster than using the Large
model test suite optimization.

The bottom-up approach offers several advantages:

• It allows you to solve the problems that slow down test generation or
property proving in a controlled environment.

• Solving problems with small model components before analyzing the model
as a whole is more efficient, especially if you have unreachable components
in your model that you can only discover in the context of the model.

• You can iterate more quickly—find a problem and fix it, find another
problem and fix it, and so on.

• If one model component has a problem, for example, it’s unreachable,
that situation can prevent the software from generating tests for all the
objectives in a large model.

Try this workflow with your large model:

1 Break down the model into components of 100–1000 objectives each. Use
the sldvextract function to extract components into a new model for
analysis purposes.

2 Analyze the individual components, starting with the lowest level
subsystems.

3 Fix any problems by adding constraints or specifying block replacements.

4 After you analyze the smaller components, reapply the necessary
constraints and substitutions to the original model and analyze the full
model.

When you finish a bottom-up analysis, you should have a top-level model
that the Simulink Design Verifier software can analyze quickly.

10-15

10 Analyzing Large Models and Improving Performance

Analyzing Logical Operations
If you have a model with both logical and arithmetic operations, consider
analyzing only the logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic
of floating-point numbers, as occurs with multiplication or division, unless
one of the multiply operands or the divisor is a constant.

To simplify models that contain integers or floating-point numbers, the
software maps the model computations into expressions of Boolean variables.
For example, the software might represent an 8-bit number as a set of 8
Boolean values, with one for each digit. It might represent a bitwise OR
operation of two 8-bit integers as 8 separate logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and
this complexity increases when the software performs such mapping. The
software handles models with predominantly logical signals more efficiently
than it does those with large integer or floating-point signals.

Note Simulink Design Verifier software can handle floating-point inputs
when their values impact the design through linear inequalities such as x < y
or a > 0.

In addition, input complexity can result from certain cast operations. For
example, casting a double to an int8 can introduce a nonlinearity in certain
situations.

10-16

Handling Models with Large State Spaces

Handling Models with Large State Spaces
Persistent design variables (variables that are assigned in one time step and
used in a later time step during simulation) affect the complexity of analysis
in much the same way as input complexity. You can use one or more of the
following techniques to simplify the complexity of the state space you want to
search:

• Apply constraints to input signals that are delayed.

• Constraint the inputs to states that are contained within conditionally
executed subsystems.

• Limit the number of test case steps by setting the Maximum test case
step parameter to 20.

• Increase the sample time for part or all of the model. (This procedure is
similar to reducing timer thresholds, as described in “Handling Problems
with Counters and Timers” on page 10-18.) A test case you generate at a
lower sample rate often has similarities to the test case with a high sample
rate that you need to achieve an objective.

States that are computed from previous state values present a special
challenge. For example, if you want to restrict the integrator value in a PID
controller, you can only use a set of values that includes all reachable values
from the initial value. Otherwise, the input must be forced to 0. Neither of
these limitations is practical and would probably make test generation or
property proving less complete.

Alternatively, you can use any existing simulation data to help satisfy your
testing needs. If you have existing test data, run it on your model and collect
model coverage. By using the sldvgencov function, you can ignore model
coverage objectives that have already been satisfied in simulation when you
supply a coverage data object.

Note For more information on satisfying missing model coverage, see the
Extending an Existing Test Suite demo.

10-17

10 Analyzing Large Models and Improving Performance

Handling Problems with Counters and Timers
Complexity from states occurs from both the size of the state representation
and the number of time steps required to transition from one state to another.
The Simulink Design Verifier software searches through sequences of time
steps, starting from the default configuration, to find input values that reach
a state that satisfies an objective.

Note For the purposes of Simulink Design Verifier analysis, the term
configuration refers to a set of values for all the persistent information in
your model.

The search process investigates all configurations that can be reached in
a single time step before considering any of the configurations that can be
reached in two time steps. Likewise, the search investigates all configurations
that can be reached in two time steps before it considers any configuration
that requires three or more time steps, etc.

Models that contain time delays, such as countdown timers, hinder the
analysis by forcing the search to span large numbers of time steps. By design,
the value of a counter can reach n only when its previous value is n – 1.

You may see similar effects when systems use extensive averaging and
filtering to delay the response to a change in inputs. Any aspect of the design
that delays the response causes the test sequences to contain more time steps,
resulting in longer test cases that are more difficult to identify.

Some basic techniques you can use to improve performance in models that
have delays include:

1 Make time delays tunable parameters. Choose very small values when
running a Simulink Design Verifier analysis. A system with a logical error
when a time delay is set to 2000 steps usually demonstrates that error if
the time delay is changed to 2 steps. If your system has several delays,
choose small but unique values for each of them so that your delays are
progressively satisfied.

10-18

Handling Problems with Counters and Timers

2 Choose higher-frequency cutoffs for filters and fewer samples to average to
minimize filtering delays.

3 Make the initial values of counters and timers parameter values that the
Simulink Design Verifier software can modify. The software finds initial
values that allow shorter test cases to exceed thresholds.

10-19

10 Analyzing Large Models and Improving Performance

Techniques for Proving Properties of Large Models
Property proving uses the same underlying techniques as test generation
and suffers from the same performance limitations. However, unlike test
generation, you often cannot simplify the problem without compromising the
validity of the results.

You can quickly prove simple proof objectives that are not affected by
model dynamics. However, a successful proof requires that the Simulink
Design Verifier software search through all reachable configurations of your
model—even the ones that are reached only after long time delays. The
computation time and memory required to search a model completely often
make an exhaustive proof impractical.

Simulink Design Verifier software offers a bounded model-checking capability
to examine properties in larger, more complicated models. Bounded model
checking restricts the search for property violations to a predefined limit
of time steps. If a violation is not detected, it is impossible to violate the
property with any input sequence having fewer time steps than the specified
limit. However, you cannot prove that the property is true because there
might be a counterexample within more time steps than the specified limit.

To configure the software for bounded model checking, on the Design
Verifier > Property Proving pane of the Configuration Parameters dialog
box, specify the value of the Strategy parameter as Find violation. When
you use this strategy, the Maximum violation steps parameter becomes
active so that you can specify an upper bound for the number of time steps
in the search.

Note For more information about the parameters for property proving, see
“Property Proving Pane” on page 6-12.

Use the following technique for proving properties in large model combines
proving and searching for violations:

1 On the Design Verifier > Property Proving pane, set the Strategy
parameter to Prove.

10-20

Techniques for Proving Properties of Large Models

2 On the Design Verifier pane, use a relatively short value for the
Maximum analysis time parameter, such as 5–10 minutes. If there are
trivial counterexamples—or if your properties do not depend on model
dynamics—the analysis should complete in that amount of time.

3 Change the Strategy parameter to Find violation, and choose a small
bound for theMaximum violation steps parameter, such as 4, 5, or 6. If
your properties have simple counterexamples, the software should discover
them.

4 If you do not find any violations with a small bound, increase the bound
and look for longer counterexamples.

a Increase the bound in several increments, and observe the processing
time and memory consumption. System resources might limit the length
of violation that can be searched.

b In addition, consider the dynamics of your model and the number of time
steps needed to transition between an arbitrary pair of configurations. If
you choose too large a bound, the violation search can be more complex
than the unbounded proof.

5 If you can run violation searches with relatively large bounds, e.g., 30–50
time steps, switch back to the Prove strategy, and use a longer time limit,
such as several hours.

10-21

10 Analyzing Large Models and Improving Performance

10-22

11

Function Reference

sldvblockreplacement

Purpose Replace model blocks to support Simulink Design Verifier analysis

Syntax [status, newmodel] = sldvblockreplacement(model)
[status, newmodel] = sldvblockreplacement(model, options)
[status, newmodel] = sldvblockreplacement(model, options,

showUI)

Description [status, newmodel] = sldvblockreplacement(model) copies the
open model and replaces specified model blocks and other model
components to prepare the model for a Simulink Design Verifier
analysis. sldvblockreplacement replaces the blocks of the model
according to the block replacement rules specified in the configuration
settings associated with model, and returns a handle to the new
model in newmodel. sldvblockreplacement returns 1 upon successful
completion. Otherwise, it returns 0.

[status, newmodel] = sldvblockreplacement(model, options)
replaces the blocks of the open model according to the block replacement
rules using the sldvoptions object specified by options, and returns a
handle to the new model in newmodel.

[status, newmodel] = sldvblockreplacement(model, options,
showUI) performs the same tasks as sldvblockreplacement(model,
options). If you set showUI to false (the default), any errors appear
at the MATLAB command line; if you set showUI to true, any errors
appear in the Simulation Diagnostics Viewer.

See Also sldvoptions

11-2

sldvcompat

Purpose Check model for compatibility with Simulink Design Verifier analysis

Syntax status = sldvcompat(model)
status = sldvcompat(block)
status = sldvcompat(model, options)

Description status = sldvcompat(model) returns 1 if the open model is compatible
with the Simulink Design Verifier software; otherwise, it returns
0. When checking for compatibility, if you select the Apply block
replacements parameter, the Simulink Design Verifier software
replaces model blocks

Note If you call this function without specifying a model, the function
operates on the current open model.

status = sldvcompat(block) converts the Simulink block into a
temporary model, and then checks the compatibility of that model
with the Simulink Design Verifier software. The function destroys the
temporary model after the compatibility check.

status = sldvcompat(model, options) checks the subsystem
specified by the open model for compatibility with the Simulink Design
Verifier software using the sldvoptions object specified by options.

Examples The following commands open the vdp demo model and check for its
compatibility with the Simulink Design Verifier software:

vdp
status = sldvcompat('vdp')

11-3

sldvcompat

The Simulink Design Verifier software displays a result that indicates
the vdp model is not compatible:

Checking compatibility of model "vdp"

Model "vdp" is not compatible with Simulink Design Verifier

status =

0

The following commands open sldvdemo_flipflop and check for its
compatibility with the Simulink Design Verifier software:

sldvdemo_flipflop
status = sldvcompat('sldvdemo_flipflop')

The Simulink Design Verifier software displays the results that indicate
the sldvdemo_flipflop model is compatible:

Checking compatibility of model "sldvdemo_flipflop"

Compiling model...done
Checking compatibility...done

Model "sldvdemo_flipflop" is compatible with
Simulink Design Verifier.

ans =

1

See Also sldvoptions, sldvrun

11-4

sldvextract

Purpose Extract subsystem contents into new model for Simulink Design
Verifier analysis

Syntax [status, modelH] = sldvextract(blockH)
[status, modelH] = sldvextract(blockH, showModel)
[status, modelH] = sldvextract(blockH, showModel, showUI)
[status, modelH] = sldvextract(blockH, showModel, showUI,

isvalid)

Description [status, modelH] = sldvextract(blockH) extracts the contents of
the subsystem that blockH specifies and creates a new model that
you can analyze using the Simulink Design Verifier software. The
sldvextract function returns the handle of the new model in modelH. It
returns status as 1 upon successful completion; otherwise, it returns 0.

[status, modelH] = sldvextract(blockH, showModel) opens the
extracted model if you set showModel to true.

[status, modelH] = sldvextract(blockH, showModel, showUI)
performs the same tasks as sldvextract(blockH, showModel,
showUI). If you set showUI to false (the default), any errors appear
at the MATLAB command line; if you set showUI to true, any errors
appear in the Simulation Diagnostics Viewer.

[status, modelH] = sldvextract(blockH, showModel, showUI,
isvalid) performs the same tasks as sldvextract(blockH,
showModel, showUI). The isvalid arguments is reserved for internal
use.

11-5

sldvgencov

Purpose Run Simulink Design Verifier analysis to obtain missing model coverage

Syntax [status, cvdo] = sldvgencov(model, options, showUI, startCov)
[status, cvdo] = sldvgencov(block, options, showUI, startCov)

Description [status, cvdo] = sldvgencov(model, options, showUI,
startCov) runs a Simulink Design Verifier analysis on the model using
the sldvoptions object options.

[status, cvdo] = sldvgencov(block, options, showUI,
startCov) runs an analysis on the atomic subsystem block using the
sldvoptions object options.

Set showUI to true to open the log window during analysis. Set showUI
to false to direct output to the MATLAB command line.

The analysis ignores all model coverage objectives that are satisfied in
the cvdata object specified by startCov.

sldvgencov returns 1 for status if the Simulink Design Verifier
software was successful; otherwise, it returns 0. It also measures the
coverage in the new tests and returns the resulting cvdata object cvdo.

See Also sldvoptions, sldvrun

11-6

sldvharnessmerge

Purpose Merge test cases and initializations into one model

Syntax status = sldvharnessmerge(name, models,
initialization_commands)

Description status = sldvharnessmerge(name, models, initialization_commands)
collects the test data and initialization commands from each test
harness model listed in models and saves them in name. This function
assumes that you have created each test harness model with the
Simulink Design Verifier software, either with the sldvrun function or
the Tools > Design Verifier > Generate Tests menu item.

If name does not exist, this function creates it as a copy of the model in
models. sldvharnessmerge then copies the data from the other models
into this model. If name was created from a previous sldvharnessmerge
run, subsequent runs of this function for name maintain the correct
structure and initialization from that earlier run. If name matches
an existing Simulink model, this function merges the test data from
models into name.

• models can be a cell array of model names or an array of model
handles.

• initialization_commands must be a cell array of strings the same
length as models. initialization_commands define parameter
settings for the test cases of each test harness model. Each time a
model test case executes, the associated initialization command is
evaluated in the base workspace.

Consider using sldvharnessmerge with sldvgencov to combine test
cases that use different sets of parameter values.

See Also sldvgencov

11-7

sldvisactive

Purpose Check if Simulink Design Verifier software is analyzing model

Syntax status = sldvisactive
status = sldvisactive(model)
status = sldvisactive(block)

Description status = sldvisactive checks if the Simulink Design Verifier
software is actively analyzing the current Simulink model.

status = sldvisactive(model) checks if the Simulink Design Verifier
software is actively analyzing the model, model.

status = sldvisactive(block) checks to see if the Simulink Design
Verifier software is actively analyzing the model that contains the
block, block.

Use the sldvisactive function in block callback functions, model
callback functions, or mask initialization to customize the analysis of the
model. For example, you can use sldvisactive to eliminate any blocks
that are incompatible with the Simulink Design Verifier software.

Output sldvisactive returns 1 if Simulink Design Verifier is active, otherwise,
it returns 0.

Example In the mEnvControl model shown in the following graphic, the mask
initialization of the Environment Controller block calls sldvisactive.

11-8

sldvisactive

The Simulink Design Verifier software does not support Band-Limited
White Noise blocks. If the software is analyzing the mEnvControl
model, the mask initialization of the Environment Controller block
sets the pass-through mode to pass the Sim signal to the output port
and eliminate the RTW port, which is incompatible with the Simulink
Design Verifier software.

11-9

sldvisactive

11-10

sldvoptions

Purpose Access Simulink Design Verifier options object

Syntax options = sldvoptions
options = sldvoptions(model)

Description options = sldvoptions returns a Simulink Design Verifier options
object that contains default values for its parameters (described in this
section).

options = sldvoptions(model) returns the Simulink Design Verifier
options object attached to the open model.

sldvoptions
Object
Parameters

The following table describes the parameters that comprise a Simulink
Design Verifier options object.

Parameter Description Values

Assertions Set by the Assertion
blocks option on the
Design Verifier >
Property Proving pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

AutomaticStubbing Set by the Automatic
stubbing of
unsupported blocks
and functions option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

11-11

sldvoptions

Parameter Description Values

BlockReplacement Set by the Apply block
replacements option on
the Design Verifier >
Block Replacements
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

BlockReplacementModel-
FileName

Set by the File path
of the output model
option on the Design
Verifier > Block
Replacements pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_replacement'}

BlockReplacementRules-
List

Set by the List of block
replacement rules
option on the Design
Verifier > Block
Replacements pane
of the Configuration
Parameters dialog box.

string
{'<FactoryDefaultRules>'}

DataFileName Set by the Data file
name option on the
Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

string
{'$ModelName$_sldvdata'}

DisplayReport Set by the Display
report option on
the Design Verifier
> Report pane of
the Configuration
Parameters dialog box.

{'on'} | 'off'

11-12

sldvoptions

Parameter Description Values

DisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test
objectives option on
the Design Verifier
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

HarnessModelFileName Set by the Harness
model file name
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_harness'}

MakeOutputFilesUnique Set by the Make
output file names
unique by adding a
suffix check box on the
Design Verifier pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

MaxProcessTime Set by the Maximum
analysis time option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

double {'600'}

MaxTestCaseSteps Set by the Maximum
test case steps option
on the Design Verifier
> Test Generation
pane of the Configuration
Parameters dialog box.

int32 {'500'}

11-13

sldvoptions

Parameter Description Values

MaxViolationSteps Set by the Maximum
violation steps option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

int32 {'20'}

Mode Set by the Mode option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

{'TestGeneration'} |
'PropertyProving'

ModelCoverageObjectives Set by the Model
coverage objectives
option on the Design
Verifier > Test
Generation pane
of the Configuration
Parameters dialog box.

'None' | 'Decision' |
'ConditionDecision' |
{'MCDC'}

ModelReferenceHarness Set by the Reference
input model in
generated harness
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

OutputDir Set by the Output
directory option on the
Design Verifier pane
of the Configuration
Parameters dialog box.

string
{'sldv_output/$ModelName$'}

11-14

sldvoptions

Parameter Description Values

Parameters Set by the Apply
parameters option
on the Design Verifier
> Parameters pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

ParametersConfigFile-
Name

Set by the Parameter
configuration file
option on the Design
Verifier > Parameters
pane of the Configuration
Parameters dialog box.

string
{'sldv_params_template.m'}

ProofAssumptions Set by the Proof
assumptions option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

ProvingStrategy Set by the Strategy
option on the Design
Verifier > Property
Proving pane of
the Configuration
Parameters dialog box.

'FindViolation'
| {'Prove'} |
'ProveWithViolationDetection'

RandomizeNoEffectData Set by the Randomize
data that does not
affect outcome option
on the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

11-15

sldvoptions

Parameter Description Values

ReportFileName Set by the Report
file name option on
the Design Verifier
> Report pane of
the Configuration
Parameters dialog box.

string {'$ModelName$_report'}

ReportIncludeGraphics Set by the Include
screen shots of
properties and test
objectives option on
the Design Verifier
> Report pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

SaveDataFile Set by the Save test
data to file option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

{'on'} | 'off'

SaveExpectedOutput Set by the Include
expected output
values option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

SaveHarnessModel Set by the Save test
harness as model
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

11-16

sldvoptions

Parameter Description Values

SaveReport Set by the Generate
report of the results
option on the Design
Verifier > Report pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

SaveSystemTestHarness Set by the Save test
harness as SystemTest
TEST-File option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

SystemTestFileName Set by the SystemTest
file name option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

$ModelName$_harness

TestConditions Set by the Test
conditions option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

11-17

sldvoptions

Parameter Description Values

TestObjectives Set by the Test
objectives option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

TestSuiteOptimization Set by the Test suite
optimization option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

{'CombinedObjectives'} |
'IndividualObjectives'
| 'LargeModel' |
'LongTestCases'

See Also sldvblockreplacement, sldvcompat, sldvgencov, sldvrun

11-18

sldvrun

Purpose Run Simulink Design Verifier analysis on model or subsystem

Syntax status = sldvrun(model)
status = sldvrun(block)
status = sldvrun(model, options)
[status, filenames] = sldvrun(model, options)
[status, filenames] = sldvrun(model, options, showUI,

startCov)

Description status = sldvrun(model) runs a Simulink Design Verifier analysis
on the specified model. The Simulink Design Verifier software uses the
configuration settings associated with model (if available). Otherwise,
the software uses its default configuration settings. Upon completion,
sldvrun returns one of the following values for status:

• -1 — Maximum processing time was exceeded.

• 0 — An error occurred.

• 1 — Preprocessing completed normally.

Note If you call this function without specifying a model, the function
operates on the current system.

status = sldvrun(block) converts the Simulink block into a new
model, and then runs a Simulink Design Verifier analysis on the new
model. The Simulink Design Verifier software uses the configuration
settings associated with the parent model of block (if available).
Otherwise, the software uses its default configuration settings.

status = sldvrun(model, options) runs a Simulink Design Verifier
analysis on the model specified by model. The Simulink Design Verifier
software uses the sldvoptions object specified by options.

[status, filenames] = sldvrun(model, options) runs a Simulink
Design Verifier analysis on the model specified by model. This function

11-19

sldvrun

returns status and filenames, a structure whose fields list the names
of the files that the Simulink Design Verifier software generates:

• DataFile — MAT-file that contains raw input data

• HarnessModel — Simulink harness model

• SystemTestFile — SystemTest TEST-file

• Report— HTML report that documents the results

• ExtractedModel— Simulink model extracted from subsystem

• BlockReplacementModel — Simulink model obtained after block
replacements

[status, filenames] = sldvrun(model, options, showUI,
startCov) opens the log window during analysis if you set showUI
to true. If you set showUI to false (the default), it directs output to
the MATLAB command line. The analysis ignores all model coverage
objects that are satisfied in the cvdata object specified by startCov.

See Also sldvcompat, sldvgencov, sldvoptions

11-20

sldvruntest

Purpose Simulate model using test case in Simulink Design Verifier data file

Syntax data = sldvruntest(model, sldvDataFile, testIdx)
data = sldvruntest(model, sldvDataFile)
[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,

true)
[data, cvdo] = sldvruntest(model, sldvDataFile, [], true)
[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx, cvt)
[data, cvdo] = sldvruntest(model, sldvDataFile, [], cvt)
[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx, true,

outputFormat)

Description data = sldvruntest(model, sldvDataFile, testIdx) simulates
model using input signals associated with a single test case that the
Simulink Design Verifier software generated. testIdx specifies the
index of the test case that the sldvDataFile MAT-file contains. This
function returns data, a structure whose fields contain the simulation
results:

• T — Simulation time vector

• X — Simulation state matrix

• Y — Simulation output captured in time-series objects or, if the
Outport block specifies a bus object, in time-series array objects

data = sldvruntest(model, sldvDataFile) simulates model using
all test cases that the MAT-file sldvDataFile contains. For each test
case, the software uses the stop time associated with that particular
test case.

[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,
true) simulates model using the test case that testIdx indexes in
the MAT-file sldvDataFile. The Simulink Verification and Validation
software collects model coverage information during the simulation,
which the function returns in the cvdata object cvdo.

[data, cvdo] = sldvruntest(model, sldvDataFile, [], true)
simulates model using all test cases in the MAT-file, sldvDataFile.

11-21

sldvruntest

The Simulink Verification and Validation software collects model
coverage information during the simulation, which the function returns
in the cvdata object cvdo.

[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,
cvt) runs a simulation using the test case that testIdx indexes in the
MAT-file sldvDataFile, and records coverage data. The coverage tool
uses the settings in the cvtest object cvt.

[data, cvdo] = sldvruntest(model, sldvDataFile, [], cvt)
runs simulations for each test case and records the cumulative coverage.
The coverage tool uses the settings in the cvtest object cvt.

[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,
true, outputFormat) stores the output values of the model in Y in
the structuredata. If you set outputFormat to 'Timeseries' (the
default), the output values are stored in the Timeseries format. If you
set outputFormat to 'StructureWithTime' and the model’s output
signals do not include bus signals, the output values are stored in the
Structure with time format.

See Also cvsim (in the Simulink Verification and Validation User’s Guide), sim
(in the Simulink Reference)

11-22

12

Block Reference

Implies

Purpose Specify conditions that produce response

Library Simulink Design Verifier

Description The Implies block lets you specify conditions to produce a given
response, for example, when you press the brake pedal on a car, the
cruise control mechanism becomes disabled. If input A is true and input
B is false, the output is false; for all other pairs of inputs, the output
is true.

You can use the Implies block in any model, not just when you run the
Simulink Design Verifier software.

Parameters
and
Dialog
Box

12-2

Proof Assumption

Purpose Constrain signal values when proving model properties

Library Simulink Design Verifier

Description When operating in property-proving mode, the Simulink Design Verifier
software proves that properties of your model satisfy specified criteria
(see Chapter 8, “Proving Properties of a Model”). In this mode, you
can use Proof Assumption blocks to define assumptions for signals in
your model. The Values parameter lets you specify constraints on
signal values during a property proof. The block applies the specified
Values parameter to its input signal, and the Simulink Design Verifier
software proves or disproves that the properties of your model satisfy
specified criteria.

The block’s parameter dialog box also allows you to:

• Enable or disable the assumption.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink and Real-Time Workshop software ignore the
Proof Assumption block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Proof
Assumption block only when proving model properties.

Specifying Proof Assumptions

Use the Values parameter to constrain signal values in property
proofs. Specify any combination of scalars and intervals in the form of
a MATLAB cell array. (For information about cell arrays, see “Cell
Arrays” in the MATLAB documentation.)

12-3

Proof Assumption

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

12-4

Proof Assumption

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)')— the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Assumption
block, the Simulink Design Verifier software combines them using
a logical OR operation during the property proof. In this case, the
software considers the entire assumption to be satisfied if any single
scalar or interval is satisfied.

Data Type
Support

The Proof Assumption block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Simulink User’s Guide.

12-5

Proof Assumption

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when proving
properties of a model. Clearing this option disables the block, that
is, causes the Simulink Design Verifier software to behave as if
the Proof Assumption block did not exist. If this option is not
selected, the block appears grayed out in the model editor.

12-6

Proof Assumption

Type
Specify whether the block behaves as a Proof Assumption or Test
Condition block. Select Test Condition to transform the Proof
Assumption block into a Test Condition block.

Values
Specify the proof assumption (see “Specifying Proof Assumptions”
on page 12-3).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
������
�����
����� ��������	
������
�������
�����

See Also Proof Objective, Test Condition

12-7

Proof Objective

Purpose Define objectives that signals must satisfy when proving model
properties

Library Simulink Design Verifier

Description When operating in property-proving mode, the Simulink Design Verifier
software proves that properties of your model satisfy specified criteria
(see Chapter 8, “Proving Properties of a Model”). In this mode, you
can use Proof Objective blocks to define proof objectives for signals in
your model.

The Values parameter lets you specify acceptable values for the block’s
input signal. If a signal value deviates from the acceptable values in
any time step, a property violation occurs and the proof objective is
falsified. The block applies the specified Values parameter to its input
signal, and the Simulink Design Verifier software proves or disproves
that the properties of your model satisfy specified criteria.

The block’s parameter dialog box allows you to

• Enable or disable the objective.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink and Real-Time Workshop software ignore the
Proof Objective block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Proof
Objective block only when proving model properties.

Specifying Proof Objectives

Use the Values parameter to define values that a signal must achieve
during a proof simulation. Specify any combination of scalars and
intervals in the form of a MATLAB cell array. (For information about
cell arrays, see “Cell Arrays” in the MATLAB documentation.)

12-8

Proof Objective

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

12-9

Proof Objective

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)')— the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Objective block,
the Simulink Design Verifier software combines them using a logical
OR operation during the property proof. In this case, the software
considers the entire proof objective to be satisfied if any single scalar or
interval is satisfied.

Data Type
Support

The Proof Objective block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Simulink User’s Guide.

12-10

Proof Objective

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when proving
properties of a model. Clearing this option disables the block,
that is, causes the Simulink Design Verifier software to behave
as if the Proof Objective block did not exist. If this option is not
selected, the block appears grayed out in the model editor.

12-11

Proof Objective

Type
Specify whether the block behaves as a Proof Objective or Test
Objective block. Select Test Objective to transform the Proof
Objective block into a Test Objective block.

Values
Specify the proof objective (see “Specifying Proof Objectives” on
page 12-8).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
������
�����
����� ��������	
������
�������
�����

See Also Proof Assumption, Test Objective

12-12

Test Condition

Purpose Constrain signal values in test cases

Library Simulink Design Verifier

Description When operating in test generation mode, the Simulink Design Verifier
software produces test cases that satisfy specified criteria (see Chapter
7, “Generating Test Cases”). In this mode, you can use Test Condition
blocks to define test conditions for signals in your model. The Values
parameter lets you specify constraints on signal values during a test
case simulation. The block applies the specified Values parameter to
its input signal, and the Simulink Design Verifier software attempts to
produce test cases that satisfy the condition.

The block’s parameter dialog box also allows you to

• Enable or disable the condition.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink and Real-Time Workshop software ignore the
Test Condition block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Test
Condition block only when generating test cases for a model.

Specifying Test Conditions

Use the Values parameter to constrain signal values in test cases.
Specify any combination of scalars and intervals in the form of a
MATLAB cell array. (For information about cell arrays, see“Cell
Arrays” in the MATLAB documentation.)

12-13

Test Condition

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

12-14

Test Condition

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)')— the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Test Condition block,
the Simulink Design Verifier software combines them using a logical
OR operation when generating test cases. Consequently, the software
considers the entire test condition to be satisfied if any single scalar or
interval is satisfied.

Data Type
Support

The Test Condition block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Simulink User’s Guide.

12-15

Test Condition

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default),
Simulink Design Verifier software uses the block when generating
tests for a model. Clearing this option disables the block, that is,
causes the Simulink Design Verifier software to behave as if the
Test Condition block did not exist. If this option is not selected,
the block appears grayed out in the model editor.

12-16

Test Condition

Type
Specify whether the block behaves as a Test Condition or Proof
Assumption block. Select Assumption to transform the Test
Condition block into a Proof Assumption block.

Values
Specify the test condition (see “Specifying Test Conditions” on
page 12-13).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
������
�����
����� ��������	
������
�������
�����

See Also Proof Assumption, Test Objective

12-17

Test Objective

Purpose Define custom objectives that signals must satisfy in test cases

Library Simulink Design Verifier

Description When operating in test generation mode, the Simulink Design Verifier
software produces test cases that satisfy specified criteria (see Chapter
7, “Generating Test Cases”). In this mode, you can use Test Objective
blocks to define custom test objectives for signals in your model. The
Values parameter lets you specify values that a signal must achieve for
at least one time step during a test case simulation. The block applies
the specified Values parameter to its input signal, and the Simulink
Design Verifier software attempts to produce test cases that satisfy
the objective.

The block’s parameter dialog box also allows you to

• Enable or disable the objective.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink and Real-Time Workshop software ignore the
Test Objective block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Test
Objective block only when generating test cases for a model.

Specifying Test Objectives

Use the Values parameter to define custom objectives that signals must
satisfy in test cases. Specify any combination of scalars and intervals in
the form of a MATLAB cell array. (For information about cell arrays,
see “Cell Arrays” in the MATLAB documentation.)

12-18

Test Objective

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

12-19

Test Objective

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)')— the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

Data Type
Support

The Test Objective block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Simulink User’s Guide.

12-20

Test Objective

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when generating
tests for a model. Clearing this option disables the block, that is,
causes the Simulink Design Verifier software to behave as if the
Test Objective block did not exist. If this option is not selected,
the block appears grayed out in the model editor.

12-21

Test Objective

Type
Specify whether the block behaves as a Test Objective or Proof
Objective block. Select Proof Objective to transform the Test
Objective block into a Proof Objective block.

Values
Specify the test objective (see “Specifying Test Objectives” on page
12-18).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
������
�����
����� ��������	
������
�������
�����

See Also Proof Objective, Test Condition

12-22

Verification Subsystem

Purpose Represent subsystem that specifies proof or test objectives without
impacting simulation results or generated code

Library Simulink Design Verifier

Description This block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem that specifies proof or test
objectives for use with the Simulink Design Verifier software. The
Real-Time Workshop software ignores Verification Subsystem blocks
during code generation, behaving as if the subsystems do not exist.
A Verification Subsystem block allows you to add Simulink Design
Verifier components to a model without affecting its generated code.

To create a Verification Subsystem in your model:

1 Copy the Verification Subsystem block from the Simulink Design
Verifier library into your model.

2 Open the Verification Subsystem block by double-clicking it.

3 In the Verification Subsystem window, add blocks that specify proof
or test objectives. Use Inport blocks to represent input from outside
the subsystem.

The Verification Subsystem block in the Simulink Design Verifier
library is preconfigured to work correctly. For correct behavior, a
Verification Subsystem block must

• Contain no Outport blocks.

• Enable its Treat as Atomic Unit parameter.

• Specify itsMask type parameter as VerificationSubsystem.

12-23

Verification Subsystem

Note If you alter a Verification Subsystem block so that it no longer
behaves correctly, the Simulink Design Verifier software displays a
warning.

See the Subsystem block in the Simulink Reference and “Creating
Subsystems” in Simulink User’s Guide for more information.

Examples The sldvdemo_debounce_validprop demo model includes a Verification
Subsystem that specifies two proof objectives, as shown in the following
figure.

12-24

Verification Subsystem

12-25

Verification Subsystem

See Also Proof Assumption, Proof Objective, Test Condition, Test Objective

12-26

13

Configuration Parameters

• “Design Verifier Pane” on page 13-2

• “Design Verifier Pane: Block Replacements” on page 13-10

• “Design Verifier Pane: Parameters” on page 13-15

• “Design Verifier Pane: Test Generation” on page 13-18

• “Design Verifier Pane: Property Proving” on page 13-26

• “Design Verifier Pane: Results” on page 13-32

• “Design Verifier Pane: Report” on page 13-46

• “Parameter Command-Line Information Summary” on page 13-52

13 Configuration Parameters

Design Verifier Pane

In this section...

“Design Verifier Pane Overview” on page 13-3
“Mode” on page 13-3
“Maximum analysis time” on page 13-5
“Display unsatisfiable test objectives” on page 13-6
“Automatic stubbing of unsupported blocks and functions” on page 13-7
“Output directory” on page 13-8
“Make output file names unique by adding a suffix” on page 13-9

13-2

Design Verifier Pane

Design Verifier Pane Overview
Specify analysis options and configure Simulink Design Verifier output.

Mode
Specify whether the Simulink Design Verifier software generates test cases
or proves properties.

Settings
Default: Test generation

Test generation
Generates test cases for a model.

Property proving
Proves properties of a model.

Tip
The Simulink Design Verifier software specifies the value of this option
automatically if you start an analysis by selecting from the Tools menu
either Design Verifier > Generate Tests or Design Verifier > Prove
Properties.

Dependency
Selecting Test generation enables the Display unsatisfiable test
objectives parameter.

The Generate Tests button changes to Prove Properties if the Mode
parameter changes from Test generation to Property proving.

Command-Line Information

Parameter: DVMode
Type: string
Value: 'TestGeneration' | 'PropertyProving'
Default: 'TestGeneration'

13-3

13 Configuration Parameters

See Also

• Generating Test Cases

• Proving Properties of a Model

13-4

Design Verifier Pane

Maximum analysis time
Specify the maximum time (in seconds) that the Simulink Design Verifier
software spends analyzing a model.

Settings
Default: 600

The value you enter represents the maximum number of seconds the Simulink
Design Verifier software analyzes your model.

Command-Line Information

Parameter: DVMaxProcessTime
Type: double
Value: any valid value
Default: 600

13-5

13 Configuration Parameters

Display unsatisfiable test objectives
Specify whether to display a warning for unsatisfiable test objectives. For
more information about using this option, see “Display unsatisfiable test
objectives” on page 6-6.

Settings
Default: On

On
Displays a warning in the Simulation Diagnostics Viewer when the
Simulink Design Verifier software is unable to satisfy a test objective.

Off
Does not display a warning when the Simulink Design Verifier software
is unable to satisfy a test objective.

Command-Line Information

Parameter: DVDisplayUnsatisfiableObjectives
Type: string
Value: 'on' | 'off'
Default: 'on'

13-6

Design Verifier Pane

Automatic stubbing of unsupported blocks and
functions
Specify whether or not Simulink Design Verifier software should ignore
unsupported blocks and functions and proceed with the analysis.

Settings
Default: Off

On
Ignores unsupported blocks and functions and proceeds with the
analysis.

Off
Displays a warning when the Simulink Design Verifier software
encounters an unsupported block or function and asks if you want to
continue the analysis.

Command-Line Information

Parameter: AutomaticStubbing
Type: string
Value: 'on' | 'off'
Default: 'off'

13-7

13 Configuration Parameters

Output directory
Specify a directory to which the Simulink Design Verifier software writes its
output.

Settings
Default: sldv_output/$ModelName$

• Enter a path that is either absolute or relative to the current directory.

• $ModelName$ is a token that represents the model name.

Tip
You can use the following parameters to customize the names and locations
of Simulink Design Verifier output:

• Data file name

• Harness model file name

• SystemTest file name

• Report file name

• File path of the output model

Command-Line Information

Parameter: DVOutputDir
Type: string
Value: any valid path
Default: 'sldv_output/$ModelName$'

13-8

Design Verifier Pane

Make output file names unique by adding a suffix
Specify whether the Simulink Design Verifier software makes its output file
names unique by appending a numeric suffix.

Settings
Default: On

On
Appends an incremental numeric suffix to Simulink Design Verifier
output file names. Selecting this option prevents the software from
overwriting existing files that have the same name.

Off
Does not append a suffix to Simulink Design Verifier output file names.
In this case, the software might overwrite existing files that have the
same name.

Command-Line Information

Parameter: DVMakeOutputFilesUnique
Type: string
Value: 'on' | 'off'
Default: 'on'

13-9

13 Configuration Parameters

Design Verifier Pane: Block Replacements

In this section...

“Block Replacements Pane Overview” on page 13-11
“Apply block replacements” on page 13-12
“List of block replacement rules” on page 13-13
“File path of the output model” on page 13-14

13-10

Design Verifier Pane: Block Replacements

Block Replacements Pane Overview
Specify options that control how the Simulink Design Verifier software
preprocesses the models it analyzes.

See Also
Working with Block Replacements

13-11

13 Configuration Parameters

Apply block replacements
Specify whether the Simulink Design Verifier software replaces blocks in
a model before its analysis.

Settings
Default: Off

On
Replaces blocks in a model before the Simulink Design Verifier software
analyzes it.

Off
Does not replace blocks in a model before the Simulink Design Verifier
software analyzes it.

Dependencies
This parameter enables List of block replacement rules and File path of
the output model.

Command-Line Information

Parameter: DVBlockReplacement
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Working with Block Replacements

13-12

Design Verifier Pane: Block Replacements

List of block replacement rules
Specify a list of block replacement rules that the Simulink Design Verifier
software executes before its analysis.

Settings
Default: <FactoryDefaultRules>

• Specify block replacement rules as a list delimited by spaces, commas,
or carriage returns.

• The Simulink Design Verifier software processes block replacement rules
in the order that you list them.

• If you specify the default value, the Simulink Design Verifier software uses
its factory default block replacement rules.

Dependency
This parameter is enabled by Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementRulesList
Type: string
Value: any rules
Default: '<FactoryDefaultRules>'

See Also
Working with Block Replacements

13-13

13 Configuration Parameters

File path of the output model
Specify a directory and file name for the model that results after applying
block replacement rules.

Settings
Default: $ModelName$_replacement

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name for the model that results after applying block
replacement rules.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementModelFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_replacement'

See Also
Working with Block Replacements

13-14

Design Verifier Pane: Parameters

Design Verifier Pane: Parameters

In this section...

“Parameters Pane Overview” on page 13-16
“Apply parameters” on page 13-16
“Parameter configuration file” on page 13-16

13-15

13 Configuration Parameters

Parameters Pane Overview
Specify options that control how the Simulink Design Verifier software uses
parameter configurations when analyzing models.

Apply parameters
Specify whether the Simulink Design Verifier software uses parameter
configurations when analyzing a model.

Settings
Default: On

On
The Simulink Design Verifier software uses parameter configurations
when analyzing a model.

Off
The Simulink Design Verifier software does not use parameter
configurations when analyzing a model.

Dependency
This parameter enables Parameter configuration file.

Command-Line Information

Parameter: DVParameters
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Specifying Parameter Configurations

Parameter configuration file
Specify an M-file function that defines parameter configurations for a model.

13-16

Design Verifier Pane: Parameters

Settings
Default: sldv_params_template.m

• The default file, sldv_params_template.m, is a template that you can edit
and save. The comments in the template explain the syntax you use to
specify parameter configurations.

• Click the Browse button to select an existing M-file function using a file
chooser dialog box.

• Click the Edit button to open the specified M-file function in an editor.

Dependency
This parameter is enabled by Apply parameters.

Command-Line Information

Parameter: DVParametersConfigFileName
Type: string
Value: any valid M-file function
Default: 'sldv_params_template.m'

See Also
Specifying Parameter Configurations

13-17

13 Configuration Parameters

Design Verifier Pane: Test Generation

In this section...

“Test Generation Pane Overview” on page 13-19
“Model coverage objectives” on page 13-20
“Test conditions” on page 13-21
“Test objectives” on page 13-22
“Maximum test case steps” on page 13-23
“Test suite optimization” on page 13-24

13-18

Design Verifier Pane: Test Generation

Test Generation Pane Overview
Specify options that control how the Simulink Design Verifier software
generates tests for the models it analyzes.

See Also
Generating Test Cases

13-19

13 Configuration Parameters

Model coverage objectives
Specify the type of model coverage that the Simulink Design Verifier software
attempts to achieve.

Settings
Default: MCDC

None
Generates test cases that achieve only the custom objectives that you
specified in your model using, for example, Test Objective blocks.

Decision
Generates test cases that achieve decision coverage.

Condition Decision
Generates test cases that achieve condition and decision coverage.

MCDC
Generates test cases that achieve modified condition/decision coverage
(MCDC).

When you set Model coverage objectives to MCDC, the Simulink Design
Verifier software automatically enables every coverage objective for decision
coverage and condition coverage as well. Similarly, enabling coverage for
condition coverage causes every decision and condition coverage outcome to
be enabled.

Command-Line Information

Parameter: DVModelCoverageObjectives
Type: string
Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'MCDC'

See Also
Generating Test Cases

13-20

Design Verifier Pane: Test Generation

Test conditions
Specify whether Test Condition blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Condition blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestConditions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Condition

• Generating Test Cases

13-21

13 Configuration Parameters

Test objectives
Specify whether Test Objective blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Objective blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestObjectives
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Objective

• Generating Test Cases

13-22

Design Verifier Pane: Test Generation

Maximum test case steps
Specify the maximum number of simulation steps the Simulink Design
Verifier software takes when attempting to satisfy a test objective.

Settings
Default: 500

You can specify a value that represents the maximum number of simulation
steps the Simulink Design Verifier software takes when attempting to satisfy
a test objective.

Command-Line Information

Parameter: DVMaxTestCaseSteps
Type: int32
Value: any valid value
Default: 500

See Also
Generating Test Cases

13-23

13 Configuration Parameters

Test suite optimization
Specify the optimization strategy to use when generating test cases.

Settings
Default: Combined objectives

Combined objectives
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. Each test case tends to be long,
i.e., it includes many time steps.

Individual objectives
Maximizes the number of test cases in a suite by generating cases that
each address only one test objective. Each test case tends to be short,
i.e., it includes only a few time steps.

Large model
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. This strategy is tailored for large,
complex models; consequently, it tends to use all the time that the
Maximum analysis time option allots.

Long test cases
Combines test cases to create a smaller number of test cases. This
strategy generates fewer, but longer, test cases that each satisfy
multiple test objectives and creates a more efficient analysis and
easier-to-review results.

Tip
If an analysis using the Combined objectives strategy returns objectives
without an outcome, set this option to Individual objectives and reanalyze
the model. The Individual objectives strategy analyzes each objective
independently and is better at identifying unsatisfiable objectives.

However, set this option to Large model if the model has both of the following
characteristics:

• Nonlinearities, such as those that result from multiplying or dividing the
model’s input signals

13-24

Design Verifier Pane: Test Generation

• Numerous test objectives, such as those that result when using blocks
that receive model coverage

The Large model strategy performs an analysis that is tailored to large,
complex models; but, this strategy tends to use all the time that the
Maximum analysis time option allots.

If you have a large number of test objectives, select Long test cases for a
more efficient analysis and an easy-to-review report.

Command-Line Information

Parameter: DVTestSuiteOptimization
Type: string
Value: 'CombinedObjectives' | 'IndividualObjectives' |
'LargeModel' | 'LongTestCases'
Default: 'CombinedObjectives'

See Also
Generating Test Cases

13-25

13 Configuration Parameters

Design Verifier Pane: Property Proving

In this section...

“Property Proving Pane Overview” on page 13-27
“Assertion blocks” on page 13-28
“Proof assumptions” on page 13-29
“Strategy” on page 13-30
“Maximum violation steps” on page 13-31

13-26

Design Verifier Pane: Property Proving

Property Proving Pane Overview
Specify options that control how the Simulink Design Verifier software proves
properties for the models it analyzes.

See Also
Proving Properties of a Model

13-27

13 Configuration Parameters

Assertion blocks
Specify whether Assertion blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Assertion blocks based on the value of the Enable
parameter of each block. If a block’s Enable parameter is selected, the
block is enabled; otherwise, the block is disabled.

Enable all
Enables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Disable all
Disables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Command-Line Information

Parameter: DVAssertions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Assertion

• Proving Properties of a Model

13-28

Design Verifier Pane: Property Proving

Proof assumptions
Specify whether Proof Assumption blocks in your model are enabled or
disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Proof Assumption blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Disable all
Disables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Command-Line Information

Parameter: DVProofAssumptions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Proof Assumption

• Proving Properties of a Model

13-29

13 Configuration Parameters

Strategy
Specify the strategy that the Simulink Design Verifier software uses when
proving properties.

Settings
Default: Prove

Prove
Performs property proofs.

Find violation
Searches for property violations within the number of simulation steps
specified by the Maximum violation steps option.

Prove with violation detection
Searches for property violations within the number of simulation steps
specified by theMaximum violation steps option; then it attempts to
prove properties for which it failed to detect a violation.

Dependency
Selecting Find violation or Prove with violation detection enables the
Maximum violation steps parameter.

Command-Line Information

Parameter: DVProvingStrategy
Type: string
Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove'

See Also
Proving Properties of a Model

13-30

Design Verifier Pane: Property Proving

Maximum violation steps
Specify the maximum number of simulation steps over which the Simulink
Design Verifier software searches for property violations.

Settings
Default: 20

The Simulink Design Verifier software does not search beyond the maximum
number of simulation steps that you specify. Therefore, it cannot identify
violations that might occur later in a simulation.

Dependency
This parameter is enabled by Strategy.

Command-Line Information

Parameter: DVMaxViolationSteps
Type: int32
Value: any valid value
Default: 20

See Also
Proving Properties of a Model

13-31

13 Configuration Parameters

Design Verifier Pane: Results

In this section...

“Results Pane Overview” on page 13-34
“Save test data to file” on page 13-35
“Data file name” on page 13-36
“Include expected output values” on page 13-37
“Randomize data that does not affect outcome” on page 13-39
“Save test harness as model” on page 13-41
“Harness model file name” on page 13-42
“Reference input model in generated harness” on page 13-43

13-32

Design Verifier Pane: Results

In this section...

“Save test harness as SystemTest TEST-file (will reference saved data file)”
on page 13-44
“SystemTest file name” on page 13-45

13-33

13 Configuration Parameters

Results Pane Overview
Specify options that control how the Simulink Design Verifier software
handles the results that it generates.

See Also
Reviewing the Results

13-34

Design Verifier Pane: Results

Save test data to file
Save the test data that the Simulink Design Verifier software generates to
a MAT-file.

Settings
Default: On

On
Saves the test data that the Simulink Design Verifier software
generates to a MAT-file.

Off
Does not save the test data that the Simulink Design Verifier software
generates.

Dependency
This parameter enables Data file name.

Command-Line Information

Parameter: DVSaveDataFile
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

13-35

13 Configuration Parameters

Data file name
Specify a directory and file name for the MAT-file that contains the data
generated during the analysis, stored in an sldvData structure.

Settings
Default: $ModelName$_sldvdata

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name for the MAT-file.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVDataFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_sldvdata'

See Also
Reviewing the Results

13-36

Design Verifier Pane: Results

Include expected output values
Simulate the model using test case signals and include the output values in
the Simulink Design Verifier data file.

Settings
Default: Off

On
Simulates the model using the test case signals that the Simulink
Design Verifier software produces. For each test case, the software
collects the simulation output values associated with Outport blocks in
the top-level system and includes those values in the MAT-file that
it generates.

Off
Does not simulate the model and collect output values for inclusion in
the MAT-file that the Simulink Design Verifier software generates.

Tips

• The TestCases.expectedOutput subfield of the MAT-file contains the
output values. For more information, see “Anatomy of the sldvData
Structure”.

• When Include expected output values is enabled, the Simulink Design
Verifier software successively simulates the model using each test case that
it generates. Enabling this option requires more time for the Simulink
Design Verifier software to complete its analysis.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVSaveExpectedOutput
Type: string
Value: 'on' | 'off'
Default: 'off'

13-37

13 Configuration Parameters

See Also
Reviewing the Results

13-38

Design Verifier Pane: Results

Randomize data that does not affect outcome
Use random values instead of zeros for input signals that have no impact on
test or proof objectives.

Settings
Default: Off

On
Assigns random values to test case or counterexample signals that do
not affect the outcome of test or proof objectives in a model. This option
can enhance traceability and improve your regression tests.

Off
Assigns zeros to test case or counterexample signals that do not affect
the outcome of test or proof objectives in a model.

Tips

• This option assigns random values to test case or counterexample signals
that otherwise would be zero. In the Simulink Design Verifier report, the
Generated Input Data table always displays a dash (–) for such signals.

• Enable this option to enhance traceability when simulating test cases or
counterexamples. For instance, consider the following model:

Only the signal entering the Switch block’s control port impacts its decision
coverage. If the Randomize data that does not affect outcome
parameter is off, the Simulink Design Verifier software uses zeros to
represent the signals from In1 and In3. When inspecting the results from
test case or counterexample simulations, it is unclear which of these signals
passes through the Switch block because they have the same value. But if
the Randomize data that does not affect outcome parameter is on, the

13-39

13 Configuration Parameters

software uses unique values to represent each of those signals. In this case,
it is easier to determine which signal passes through the Switch block.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVRandomizeNoEffectData
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

13-40

Design Verifier Pane: Results

Save test harness as model
Save the test harness that the Simulink Design Verifier software generates as
a model file.

Settings
Default: On

On
Saves the test harness that the Simulink Design Verifier software
generates as a model file.

Off
Does not save the test harness that the Simulink Design Verifier
software generates.

Dependency
This parameter enables Harness model file name.

Command-Line Information

Parameter: DVSaveHarnessModel
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

13-41

13 Configuration Parameters

Harness model file name
Specify a directory and file name for the test harness model.

Settings
Default: $ModelName$_harness

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name for the test harness model.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test harness as model.

Command-Line Information

Parameter: DVHarnessModelFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_harness'

See Also
Reviewing the Results

13-42

Design Verifier Pane: Results

Reference input model in generated harness
Use model reference to run the model in the test harness.

Settings
Default: Off

On
Uses model reference to run the model in the test harness.

Off
Uses a copy of the model in the test harness.

Command-Line Information

Parameter: DVModelReferenceHarness
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

13-43

13 Configuration Parameters

Save test harness as SystemTest TEST-file (will
reference saved data file)
Save the test harness as a SystemTest TEST-file so you can run test cases
using the SystemTest capabilities.

Note The option to create a SystemTest TEST-file is only available
in test-generation mode; you cannot create this file when running a
property-proving analysis.

Settings
Default: Off

On
Saves the test harness as a SystemTest TEST-file.

Off
Does not save the test harness as a SystemTest TEST-file.

Dependency
This parameter enables SystemTest file name.

Command-Line Information

Parameter: DVSaveSystemTestHarness
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

13-44

Design Verifier Pane: Results

SystemTest file name
Specify a directory and file name for the SystemTest TEST-file.

Settings
Default: $ModelName$_harness

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name for the SystemTest TEST-file.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test harness as SystemTest TEST-file
(will reference saved data file).

Command-Line Information

Parameter: DVMSystemTestFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_harness'

See Also
Reviewing the Results

13-45

13 Configuration Parameters

Design Verifier Pane: Report

In this section...

“Report Pane Overview” on page 13-47
“Generate report of the results” on page 13-48
“Report file name” on page 13-49
“Include screen shots of properties and text objectives” on page 13-50
“Display report” on page 13-51

13-46

Design Verifier Pane: Report

Report Pane Overview
Specify options that control how the Simulink Design Verifier software
reports its results.

See Also
Reviewing the Results

13-47

13 Configuration Parameters

Generate report of the results
Generate and save a Simulink Design Verifier report.

Settings
Default: on

On
Saves the HTML report that the Simulink Design Verifier software
generates.

Off
Does not generate a Simulink Design Verifier report.

Dependencies
When this parameter is enabled, you must enable Save test harness as
model.

This parameter enables the following parameters:

• Report file name

• Include screen shots of properties and test objectives

• Display report

Command-Line Information

Parameter: DVSaveReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

13-48

Design Verifier Pane: Report

Report file name
Specify a directory and file name for the report that Simulink Design Verifier
software generates.

Settings
Default: $ModelName$_report

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name for the report Simulink Design Verifier software
generates.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_report'

See Also
Reviewing the Results

13-49

13 Configuration Parameters

Include screen shots of properties and text objectives
Includes screen shots of properties in the Simulink Design Verifier report.
Only valid in property-proving mode.

Settings
Default: Off

On
Includes screen shots of properties in the Simulink Design Verifier
report. Only valid in property-proving mode.

Off
Does not include screen shots of properties in the Simulink Design
Verifier report.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportIncludeGraphics
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

13-50

Design Verifier Pane: Report

Display report
Display the report that the Simulink Design Verifier software generates after
completing its analysis.

Settings
Default: On

On
Displays the report that the Simulink Design Verifier software
generates after completing its analysis.

Off
Does not display the report that the Simulink Design Verifier software
generates after completing its analysis.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVDisplayReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

13-51

13 Configuration Parameters

Parameter Command-Line Information Summary
The following table lists parameters that you can use to configure the
behavior of the Simulink Design Verifier software. Use the get_param and
set_param functions to retrieve and specify values for these parameters
programmatically.

For each parameter listed in the table, the Description column indicates
where you can set its value on the Configuration Parameters dialog box.
The Values column shows the type of value required, the possible values
(separated with a vertical line), and the default value (enclosed in braces).

Parameter Description Values

DVAssertions Set by the Assertion blocks
option on the Design
Verifier > Property
Proving pane of the
Configuration Parameters
dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVBlockReplacement Set by the Apply block
replacements option on the
Design Verifier > Block
Replacements pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

DVBlockReplacementModel-
FileName

Set by the File path of the
output model option on the
Design Verifier > Block
Replacements pane of the
Configuration Parameters
dialog box.

string
{'$ModelName$_replacement'}

DVBlockReplacementRules-
List

Set by the List of block
replacement rules option
on the Design Verifier
> Block Replacements
pane of the Configuration
Parameters dialog box.

string
{'<FactoryDefaultRules>'}

13-52

Parameter Command-Line Information Summary

Parameter Description Values

DVDataFileName Set by the Data file name
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_sldvdata'}

DVDisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test
objectives option on the
Design Verifier pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

DVHarnessModelFileName Set by the Harness model
file name option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

string
{'$ModelName$_harness'}

DVMakeOutputFilesUnique Set by theMake output file
names unique by adding
a suffix check box on the
Design Verifier pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

DVMaxProcessTime Set by the Maximum
analysis time option on the
Design Verifier pane of the
Configuration Parameters
dialog box.

double {'600'}

DVMaxTestCaseSteps Set by the Maximum test
case steps option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

int32 {'500'}

13-53

13 Configuration Parameters

Parameter Description Values

DVMaxViolationSteps Set by the Maximum
violation steps option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

int32 {'20'}

DVMode Set by the Mode option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

{'TestGeneration'} |
'PropertyProving'

DVModelCoverageObjectives Set by the Model coverage
objectives option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

'None' | 'Decision' |
'ConditionDecision' |
{'MCDC'}

DVModelReferenceHarness Set by the Reference
input model in generated
harness option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off')

DVOutputDir Set by theOutput directory
option on the Design
Verifier pane of the
Configuration Parameters
dialog box.

string
{'sldv_output/$ModelName$'}

DVOutputDir Set by theOutput directory
option on the Design
Verifier pane of the
Configuration Parameters
dialog box.

string
{'sldv_output/$ModelName$'}

13-54

Parameter Command-Line Information Summary

Parameter Description Values

DVParameters Set by the Apply
parameters option on
the Design Verifier >
Parameters pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

DVParametersConfigFile-
Name

Set by the Parameter
configuration file option
on the Design Verifier >
Parameters pane of the
Configuration Parameters
dialog box.

string
{'sldv_params_template.m'}

DVProofAssumptions Set by the Proof
assumptions option on
the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVProvingStrategy Set by the Strategy option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'FindViolation'
| {'Prove'} |
'ProveWithViolationDetection'

DVRandomizeNoEffectData Set by the Randomize
data that does not affect
outcome option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVReportFileName Set by the Report file
name option on the
Design Verifier > Report
pane of the Configuration
Parameters dialog box.

string {'$ModelName$_report'}

13-55

13 Configuration Parameters

Parameter Description Values

DVReportIncludeGraphics Set by the Include screen
shots of properties and
test objectives option on the
Design Verifier > Report
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVSaveDataFile Set by the Save test
data to file option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVSaveExpectedOutput Set by the Include expected
output values option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVSaveHarnessModel Set by theSave test harness
as model option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVSaveReport Set by the Generate report
of the results option on the
Design Verifier > Report
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVSaveSystemTestHarness Set by the Save text
harness as SystemTest
TEST-file (will reference
saved data file) option
on the Design Verifier
> Results pane of the
Configuration Parameters
dialog box.

'on' | {off'}

13-56

Parameter Command-Line Information Summary

Parameter Description Values

DVSystemTestFileName Set by the SystemTest
file name option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

string
{'$ModelName$_harness'}

DVTestConditions Set by the Test conditions
option on the Design
Verifier > Test Generation
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVTestObjectives Set by the Test objectives
option on the Design
Verifier > Test Generation
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVTestSuiteOptimization Set by the Test suite
optimization option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

{'CombinedObjectives'} |
'IndividualObjectives'
| 'LargeModel' |
'LongTestCases'

13-57

13 Configuration Parameters

13-58

14

Simulink Block Support

• “Overview of Simulink Block Support” on page 14-2

• “Additional Math and Discrete Library” on page 14-3

• “Commonly Used Blocks Library” on page 14-4

• “Continuous Library” on page 14-5

• “Discontinuities Library” on page 14-6

• “Discrete Library” on page 14-7

• “Logic and Bit Operations” on page 14-8

• “Lookup Tables Library” on page 14-9

• “Math Operations” on page 14-10

• “Model Verification Library” on page 14-12

• “Model-Wide Utilities Library” on page 14-13

• “Ports & Subsystems Library” on page 14-14

• “Signal Attributes Library” on page 14-15

• “Signal Routing Library” on page 14-16

• “Sinks Library” on page 14-17

• “Sources Library” on page 14-18

• “User-Defined Functions Library” on page 14-19

14 Simulink® Block Support

Overview of Simulink Block Support
The following tables summarize the Simulink Design Verifier software’s
support for Simulink blocks. Each table lists all the blocks in that Simulink
library and support information for that particular block. A dash (—)
indicates that the software supports that block under all conditions.

If the software does not support a given block, you can turn on automatic
stubbing, which considers the interface of the unsupported blocks, but
not their behavior. However, if any of the unsupported blocks affect the
simulation outcome, the analysis may achieve only partial results.

For details about automatic stubbing, see “Handling Incompatibilities with
Automatic Stubbing” on page 2-6.

14-2

Additional Math and Discrete Library

Additional Math and Discrete Library

Block Support Notes

Decrement Real World —

Decrement Stored Integer —

Decrement Time To Zero —
Decrement To Zero —
Fixed-Point State-Space —

Increment Real World —

Increment Stored Integer —

Transfer Fcn Direct Form II Not supported
Transfer Fcn Direct Form II Time
Varying

Not supported

Unit Delay Enabled —

Unit Delay Enabled External IC —

Unit Delay Enabled Resettable —

Unit Delay Enabled Resettable
External IC

—

Unit Delay External IC —

Unit Delay Resettable —

Unit Delay Resettable External IC —

Unit Delay With Preview Enabled —

Unit Delay With Preview Enabled
Resettable

—

Unit Delay With Preview Enabled
Resettable External RV

—

Unit Delay With Preview Resettable —

Unit Delay With Preview Resettable
External RV

—

14-3

14 Simulink® Block Support

Commonly Used Blocks Library
The Commonly Used Blocks library includes blocks from other libraries.
Those blocks are listed under their respective libraries.

14-4

Continuous Library

Continuous Library

Block Support Notes

Derivative Not supported
Integrator Not supported
State-Space Not supported
Transfer Fcn Not supported
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported

14-5

14 Simulink® Block Support

Discontinuities Library

Block Support Notes

Backlash Not supported
Coulomb & Viscous Friction —

Dead Zone Not supported
Dead Zone Dynamic —

Hit Crossing —

Quantizer —

Rate Limiter Supports only input and output signals of data type
single or double.

Rate Limiter Dynamic —

Relay —

Saturation —

Saturation Dynamic —
Wrap To Zero —

14-6

Discrete Library

Discrete Library

Block Support Notes

Difference —

Discrete Derivative Not supported
Discrete Filter —

Discrete FIR Filter —

Discrete State-Space Not supported
Discrete Transfer Fcn Not supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator —

First-Order Hold —

Integer Delay —
Memory —
Tapped Delay Not supported
Transfer Fcn First Order —

Transfer Fcn Lead or Lag —

Transfer Fcn Real Zero —

Unit Delay —

Zero-Order Hold —

14-7

14 Simulink® Block Support

Logic and Bit Operations

Block Support Notes

Bit Clear —

Bit Set —

Bitwise Operator —

Combinatorial Logic —

Compare To Constant —

Compare To Zero —

Detect Change —

Detect Decrease —
Detect Fall Negative —
Detect Fall Nonpositive —
Detect Increase —
Detect Rise Nonnegative —

Detect Rise Positive —

Extract Bits —
Interval Test —

Interval Test Dynamic —

Logical Operator —

Relational Operator —

Shift Arithmetic Not supported when the Number of bits to shift right
parameter specifies a vector and the block’s input or
output signal has a data type other than single or
double.

14-8

Lookup Tables Library

Lookup Tables Library

Block Support Notes

Cosine Not supported
Direct Lookup Table (n-D) Not supported
Interpolation Using Prelookup Not supported
Lookup Table Input and output must have the same data type, either

single or double.
Lookup Table (2-D) Input and output must have the same data type, either

single or double.
Lookup Table (n-D) Input and output must have the same data type, either

single or double.

Not supported when either the Interpolation method
or the Extrapolation method parameter specifies
Cubic Spline.

Supports only Number of table dimensions that
specify either 1 or 2.

Lookup Table Dynamic Not supported
Prelookup —

Sine Not supported

14-9

14 Simulink® Block Support

Math Operations

Block Support Notes

Abs —

Add —

Algebraic Constraint —

Assignment —

Bias —

Complex to
Magnitude-Angle

—

Complex to Real-Imag —

Divide —

Dot Product —

Gain —

Magnitude-Angle to
Complex

Not supported

Math Function

These signal types... Support these function
parameter settings

All • conj

• mod

• rem

Floating point • magnitude^2

• square

• reciprocal

• transpose

• hermitian

Integer or fixed-point • sqrt

14-10

Math Operations

Block Support Notes

Matrix Concatenate —

MinMax —

MinMax Running
Resettable

—

Permute Dimensions —

Polynomial —

Product —

Product of Elements —

Real-Imag to Complex Not supported
Reshape —

Rounding Function —

Sign —

Sine Wave Function Not supported
Slider Gain —

Squeeze —

Subtract —

Sum —

Sum of Elements —

Trigonometric Function Not supported
Unary Minus —

Vector Concatenate —

Weighted Sample Time
Math

Not supported

14-11

14 Simulink® Block Support

Model Verification Library
The Simulink Design Verifier software supports all blocks in the Model
Verification library.

14-12

Model-Wide Utilities Library

Model-Wide Utilities Library

Block Support Notes

Block Support Table —

DocBlock —

Model Info —

Time-Based Linearization Not supported
Trigger-Based Linearization Not supported

14-13

14 Simulink® Block Support

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem —

Code Reuse Subsystem —

Configurable Subsystem —

Enabled Subsystem —

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

For Iterator Subsystem —

Function-Call Generator —

Function-Call Subsystem —

If Parameter configurations are not supported for the If
and Fcn blocks. The Simulink Design Verifier software
ignores any parameter configurations that you specify
for these blocks.

If Action Subsystem —

Model Supported except for limitations described in
“Limitations of Support for Model Reference” on page
3-10.

Subsystem —

Switch Case —

Switch Case Action Subsystem —

Triggered Subsystem Not supported when the trigger control signal specifies a
fixed-point data type.

While Iterator Subsystem —

14-14

Signal Attributes Library

Signal Attributes Library

Block Support Notes

Bus to Vector —

Data Type Conversion —

Data Type Conversion Inherited —

Data Type Duplicate —
Data Type Propagation —

Data Type Scaling Strip —

IC —

Probe —

Rate Transition —

Signal Conversion —

Signal Specification —

Weighted Sample Time Not supported
Width Not supported

14-15

14 Simulink® Block Support

Signal Routing Library
The Simulink Design Verifier software supports all blocks in the Signal
Routing library.

14-16

Sinks Library

Sinks Library

Block Support Notes

Display —

Floating Scope —

Outport (Out1) —

Scope —

Stop Simulation Not supported
Terminator —

To File —
To Workspace —

XY Graph —

14-17

14 Simulink® Block Support

Sources Library

Block Support Notes

Band-Limited White Noise Not supported
Chirp Signal Not supported
Clock —

Constant —

Counter Free-Running —

Counter Limited —

Digital Clock —

From File Not supported
From Workspace Not supported
Ground —

Inport (In1) —

Pulse Generator Supports only Sample based for the Pulse type
parameter; also, must specify a discrete sample time.

Ramp —
Random Number Not supported
Repeating Sequence Not supported
Repeating Sequence Interpolated Not supported
Repeating Sequence Stair —

Signal Builder Not supported
Signal Generator Not supported
Sine Wave Not supported
Step —

Uniform Random Number Not supported

14-18

User-Defined Functions Library

User-Defined Functions Library

Block Support Notes

Embedded MATLAB Function For limitations, see “Support Limitations for the
Embedded MATLAB Subset” on page 3-14 for more
information.

Fcn Supports all operators except ^, and supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Parameter configurations are not supported for the If
and Fcn blocks. The Simulink Design Verifier software
ignores any parameter configurations that you specify
for these blocks.

Level-2 M-file S-Function Not supported
MATLAB Fcn Not supported
S-Function Not supported
S-Function Builder Not supported

14-19

14 Simulink® Block Support

14-20

15

Embedded MATLAB Subset
Support

15 Embedded MATLAB™ Subset Support

This table lists only the Embedded MATLAB library functions for which the
Simulink Design Verifier software provides no support or limited support. See
“Embedded MATLAB Function Library Reference” for the complete listing
of available functions.

Function Support Notes

Arithmetic Operator Functions
mldivide (\) Supports only scalar arguments.
mpower (^) Supports only integer exponents.
mrdivide (/) Supports only scalar arguments.
power (.^) Supports only integer exponents.
Casting Functions
char Not supported.
typecast Not supported.
Complex Number Functions
complex Not supported.
imag Not supported.
Error-Handling Functions
assert Supported, but does not behave like a Proof Objective

block.
Exponential Functions
exp Not supported.
expm Not supported.
expm1 Not supported.
log Not supported.
log2 Not supported.
log10 Not supported.
log1p Not supported.
nextpow2 Not supported.

15-2

Function Support Notes

nthroot Not supported.
reallog Not supported.
realpow Not supported.
realsqrt Not supported.
sqrt Not supported.
Filtering and Convolution Functions
detrend Not supported.
Fixed-Point Toolbox™ Functions
complex Not supported.
Interpolation and Computational Geometry
cart2pol Not supported.
cart2sph Not supported.
pol2cart Not supported.
sph2cart Not supported.
Matrix and Array Functions
angle Not supported.
cond Not supported.
det Not supported.
eig Not supported.
inv Not supported.
invhilb Not supported.
logspace Not supported.
lu Not supported.
norm Supported only when invoked using the syntax

norm(A,p)

where p is either 1 or inf.

15-3

15 Embedded MATLAB™ Subset Support

Function Support Notes

normest Not supported.
pinv Not supported.
planerot Not supported.
qr Not supported.
rank Not supported.
rcond Not supported.
subspace Not supported.
Polynomial Functions
poly Not supported.
polyfit Not supported.
Signal Processing Functions
chol Not supported.
fft Not supported.
fftshift Not supported.
ifft Not supported.
ifftshift Not supported.
sosfilt Not supported.
svd Not supported.
Special Values
rand Not supported.
randn Not supported.
Specialized Math
beta Not supported.
betainc Not supported.
betaln Not supported.
ellipke Not supported.

15-4

Function Support Notes

erf Not supported.
erfc Not supported.
erfcinv Not supported.
erfcx Not supported.
erfinv Not supported.
expint Not supported.
gamma Not supported.
gammainc Not supported.
gammaln Not supported.
Statistical Functions
std Not supported.
String Functions
char Not supported.
ischar Not supported.
Trigonometric Functions
acos Not supported.
acosd Not supported.
acosh Not supported.
acot Not supported.
acotd Not supported.
acoth Not supported.
acsc Not supported.
acscd Not supported.
acsch Not supported.
asec Not supported.
asecd Not supported.

15-5

15 Embedded MATLAB™ Subset Support

Function Support Notes

asech Not supported.
asin Not supported.
asinh Not supported.
atan Not supported.
atan2 Not supported.
atand Not supported.
atanh Not supported.
cos Not supported.
cosd Not supported.
cosh Not supported.
cot Not supported.
cotd Not supported.
coth Not supported.
csc Not supported.
cscd Not supported.
csch Not supported.
hypot Not supported.
sec Not supported.
secd Not supported.
sech Not supported.
sin Not supported.
sind Not supported.
sinh Not supported.
tan Not supported.
tand Not supported.
tanh Not supported.

15-6

Glossary

Glossary

analysis model
The target model for a Simulink Design Verifier analysis. If you select
an atomic subsystem for analysis, the analysis model is generated by
extracting the subsystem to a new model.

assumption
A property that is assumed to be true during a property proof. The proof
result holds only when the assumption is true.

block replacement rule
A rule that is registered with the Simulink Design Verifier software and
defines how instances of specific blocks are replaced by an alternate
implementation. The software uses M-code to define when and how to
apply a block replacement rule (see Chapter 4, “Working with Block
Replacements”).

condition coverage
Measures the percentage of the total number of logic conditions
associated with logical model objects that the simulation actually
exercised. Enabling condition coverage causes every decision and
condition coverage outcome to be enabled. See “Types of Model
Coverage” in the Simulink Verification and Validation User’s Guide.

constraint
A property that is forced to be true during test case generation.

counterexample
A test case that demonstrates a property violation.

coverage objective
A test objective that defines when a coverage point results in a
particular outcome.

coverage point
A decision, condition, or MCDC expression associated with a model
object. Each coverage point has a fixed number of mutually exclusive
outcomes.

Glossary-1

Glossary

decision coverage
Measures the percentage of the total number of simulation paths
through model objects that the simulation actually traversed. Decision
coverage is a subset of modified decision/condition coverage. See “Types
of Model Coverage” in the Simulink Verification and Validation User’s
Guide.

floating-point approximation
The process of approximating floating-point numbers using rational
numbers (i.e., fractions whose numerator and denominator are small
integers). The Simulink Design Verifier software performs floating-point
approximations during its analysis. It can generate invalid test cases
that result from numerical differences. For example, given a sufficiently
large floating-point number x, the expression x==(x+1) is true; however,
this expression never holds if x is a rational number.

invalid test case
A test case that does not satisfy its objectives.

modified condition/decision coverage (MCDC)
Measures the independence of logical block inputs and transition
conditions associated with logical model objects during the simulation.
When you set the coverage objective to MCDC, Simulink Design Verifier
automatically enables every coverage objective for decision coverage
and condition coverage as well. See “Types of Model Coverage” in the
Simulink Verification and Validation User’s Guide.

nonlinear arithmetic
A computation in the model that cannot be expressed as a combination
of mutually exclusive linear expressions. Nonlinear arithmetic can
affect a property or test objective, and it can cause the analysis to return
an error. In this case, you should apply simplifying approximations
and abstractions.

property
A logical expression of the signals and data values, within a model, that
is intended to be proven true during simulation. Properties evaluate at
specific points in the model.

Glossary-2

Glossary

property violation
The condition during a simulation when a property is false.

test case
A sequence of numeric values and input data time that you input to a
model during its simulation.

test harness
A model that runs test cases on an analysis model.

test objective
A logical expression of the signals and data values, within a model, that
is intended to be true at least once in the resulting test case during
simulation. Test objectives evaluate at specific points in the model.

Test Objective block
The block that you add to a model to define test objectives. In the block
mask, define test objectives as values or ranges that an input signal
must satisfy during a test case.

unsatisfiable test objective
The status of a test objective that indicates a test case cannot be
generated for the specified approximations. This includes floating-point
approximations and maximum-step limitations specified in the Test
Generation pane of the Configuration Parameters dialog box.

validated property
The status of a property that indicates no counterexample exists,
subject to floating-point approximations and the settings specified in the
Property Proving pane of the Configuration Parameters dialog box.

Glossary-3

Glossary

Glossary-4

A

Examples

Use this list to find examples in the documentation.

A Examples

Automatic Stubbing
“Analyzing a Model Using Automatic Stubbing” on page 2-6

Working with Block Replacements
“Specifying Replacement Blocks” on page 4-7
“Writing Block Replacement Rules” on page 4-10
“Configuring Block Replacements” on page 4-15

Specifying Parameter Configurations
“Constructing the Example Model” on page 5-8
“Parameterizing the Constant Block” on page 5-10
“Specifying a Parameter Configuration” on page 5-11
“Analyzing the Example Model” on page 5-13
“Simulating the Test Cases” on page 5-15

Generating Test Cases
“Constructing the Example Model” on page 7-5
“Checking Compatibility of the Example Model” on page 7-6
“Configuring Test Generation Options” on page 7-10
“Analyzing the Example Model” on page 7-13
“Customizing Test Generation” on page 7-21
“Reanalyzing the Example Model” on page 7-25

Proving Properties of a Model
“Constructing the Example Model” on page 8-5
“Instrumenting the Example Model” on page 8-10

A-2

Proving Properties of a Model

“Configuring Property-Proving Options” on page 8-13
“Analyzing the Example Model” on page 8-15
“Customizing the Example Proof” on page 8-21
“Reanalyzing the Example Model” on page 8-24
“Property-Proving Examples” on page 8-28

A-3

A Examples

A-4

Index

Symbols and Numerics
2-D lookup tables

linearizing 2-15

A
AnalysisInformation field 9-4
analyzing large models

initial steps 10-4
analyzing models

overview 2-2
approximations

types 2-14
automatic stubbing

definition 2-6
enabling 2-10
workflow 2-6

B
block replacements

configuration 4-15
example 4-7
execution 4-16
factory defaults 4-3
introduction 4-2
template 4-6

block support
limitations 3-9
summary 14-1

C
combining

test cases 1-23
configuration parameters

block replacements 6-7
Block Replacements pane 13-11

Apply block replacements 13-12
File path of the output model 13-14

List of block replacement rules 13-13
Design Verifier 6-5
Design Verifier pane 13-3

Automatic stubbing of unsupported
blocks and functions 13-7

Display unsatisfiable test objectives 13-6
Make output file names unique by adding

a suffix 13-9
Maximum analysis time 13-5
Mode 13-3
Output directory 13-8

pane
Reference input model in generated

harness 13-43
Save test harness as SystemTest

TEST-file (will reference saved data
file) 13-44

SystemTest file name: 13-45
parameters 6-9
Parameters pane 13-16

Apply parameters 13-16
Parameter configuration file 13-16

property proving 6-12
Property Proving pane 13-27

Assertion blocks 13-28
Maximum violation steps 13-31
Proof assumptions 13-29
Strategy 13-30

report 6-17
Report pane 13-47

Display report 13-51
Generate report of the results 13-48
Include screen shots of properties and

test objectives 13-50
Report file name 13-49

results 6-14
Results pane 13-34

Data file name 13-36
Harness model file name 13-42
Include expected output values 13-37

Index-1

Index

Randomize data that does not affect
outcome 13-39

Save test data to file 13-35
Save test harness as model 13-41

summary 13-52
test generation 6-10
Test Generation pane 13-19

Maximum test case steps 13-23
Model coverage objectives 13-20
Test conditions 13-21
Test objectives 13-22
Test suite optimization 13-24

CounterExamples field 9-5

D
discretization

constraining data 10-9

E
Embedded MATLAB library functions

limitations 3-15
Embedded MATLAB subset support

summary 15-2

F
floating-point data

constraining for model analysis 10-9
converting to rational 2-14

G
generating test cases 1-8

H
harness. See test harness

L
large model optimization 10-6
large models

analyzing
first steps 10-4

complexity of 10-2
linearizing

2-D lookup tables 2-15
lookup tables

linearizing 2-15

M
model compatibility

checking 3-2
ModelInformation field 9-3
ModelObjects field 9-4
models 10-2

analyzing, overview 2-2
complexity of 10-2
mathematical techniques for simplifying

analysis 2-5
See also large models

O
Objectives field 9-5

P
parameter configurations

example 5-7
introduction 5-2
syntax 5-4
template 5-3

Proof Assumption block 12-3
Proof Objective block 12-8
property proofs

example 8-4
introduction 8-2

Index-2

Index

Stateflow actions 8-2
subsystems 8-27
workflow 8-3

R
rational data

converting floating-point data to 2-14

S
Simulink Design Verifier

model parameters 13-52
Simulink Design Verifier data files

fields 9-3
overview 9-2
simulation 9-7

Simulink Design Verifier options
saving 6-19
viewing 6-2

Simulink Design Verifier report
table of contents 9-18

Simulink Design Verifier reports
analysis information 9-20
approximations 9-24
block replacements summary 9-23
Constraints 9-22
model items 9-29
summary 9-19
test cases/counterexamples 9-29
test/proof objectives 9-25
title 9-18
Unsupported Blocks 9-22

Simulink® Design Verifier™ software
analyzing demo model 1-6
block library 1-4
HTML report 1-15
starting 1-4
workflow 1-30

sldvblockreplacement function 11-2

sldvcompat function 11-3
sldvextract function 11-5
sldvgencov function 11-6
sldvharnessmerge function 11-7
sldvoptions function 11-11
sldvrun function 11-19
sldvruntest function 11-21
stubbing. See automatic stubbing
subsystems

analyzing 1-26
generating test cases for 7-30
proving properties of 8-27

system requirements 1-3

T
test case generation

example 7-4
introduction 7-2
Stateflow actions 7-2
subsystems 7-30
test objectives 2-3
workflow 7-3

test cases
combining 1-23
generating 1-8

Test Condition block 12-13
test harness

contents 1-10
test harness models

anatomy 9-8
simulation 9-13

Test Objective block 12-18
test objectives

generating test cases 2-3
test suite optimization

large model option 10-6
TestCases field 9-5
Trigonometric Function block

Index-3

Index

Simulink Design Verifier does not
support 2-6

U
unrolling

while loops 2-15
unsupported features

Embedded MATLAB subset 3-14
Simulink 3-8
Stateflow 3-12

V
Verification Subsystem block 12-23
Version field 9-7

W
while loops

unrolling 2-15

Index-4

	toc
	Acknowledgment
	Getting Started
	Product Overview
	Before You Begin
	What You Need to Know
	Required Products

	Starting the Simulink Design Verifier Software
	Analyzing a Model
	About This Demo
	Opening the Model
	Generating Test Cases
	Running the Analysis
	Exploring the Test Harness
	Interpreting the Simulink Design Verifier HTML Report

	Combining Test Cases

	Analyzing a Subsystem
	Basic Workflow for Using the Simulink Design Verifier Software
	Learning More
	Next Step
	Product Help
	The MathWorks Online

	How the Simulink Design Verifier Software Works
	Model Analysis with Simulink Design Verifier Software
	Analyzing a Simple Model
	Analyzing Large Models
	Handling Incompatibilities with Automatic Stubbing
	What Is Automatic Stubbing?
	Analyzing a Model Using Automatic Stubbing
	Checking Model Compatibility
	Turning On Automatic Stubbing
	Reviewing the Results
	Achieving Complete Results

	Approximations
	Approximations During Model Analysis
	Types of Approximations
	Converting Floating-Point Arithmetic to Rational-Number Arithmet
	Linearizing 2-D Lookup Tables
	Unrolling While Loops
	Ensuring the Validity of the Analysis

	Ensuring Compatibility with the Simulink Design Verifier Softwar
	Checking Model Compatibility
	Model Is Compatible
	Model Is Incompatible
	Some Model Elements Are Incompatible

	Unsupported Simulink Software Features
	Simulink Software Features Not Supported
	Simulink Block Support Limitations
	Limitations of Support for Model Reference

	Unsupported Stateflow Software Features
	Support Limitations for the Embedded MATLAB Subset
	Unsupported Embedded MATLAB Subset Features
	Limitations of Embedded MATLAB Library Function Support

	Fixed-Point Support Limitations

	Working with Block Replacements
	About Block Replacements
	Built-In Block Replacements
	Template for Block Replacement Rules
	Defining Custom Block Replacements
	About Custom Block Replacements
	Specifying Replacement Blocks
	Writing Block Replacement Rules

	Executing Block Replacements
	Configuring Block Replacements
	Replacing Blocks in a Model

	Specifying Parameter Configurations
	About Parameter Configurations
	Template for Parameter Configurations
	Defining Parameter Configurations
	Parameter Configuration Example
	About This Example
	Constructing the Example Model
	Parameterizing the Constant Block
	Specifying a Parameter Configuration
	Analyzing the Example Model
	Simulating the Test Cases

	Configuring Simulink Design Verifier Options
	Viewing Simulink Design Verifier Options
	Configuring Simulink Design Verifier Options
	Design Verifier Pane
	Analysis options
	Output
	Check Model Compatibility
	Generate Tests or Prove Properties

	Block Replacements Pane
	Block replacements

	Parameters Pane
	Parameters

	Test Generation Pane
	Test generation

	Property Proving Pane
	Property proving

	Results Pane
	Data file options
	Harness model options
	SystemTest options

	Report Pane
	Report

	Saving Simulink Design Verifier Options

	Generating Test Cases
	About Test Case Generation
	Basic Workflow for Generating Test Cases
	Generating Test Cases for a Model
	About This Example
	Constructing the Example Model
	Checking Compatibility of the Example Model
	What If a Model Is Partially Compatible?

	Configuring Test Generation Options
	Analyzing the Example Model
	What If the Analysis Generates Many Test Cases?

	Customizing Test Generation
	Reanalyzing the Example Model
	Analyzing Contradictory Models

	Generating Test Cases for a Subsystem

	Proving Properties of a Model
	About Property Proofs
	Basic Workflow for Proving Model Properties
	Proving Properties in a Model
	About This Example
	Constructing the Example Model
	Checking Compatibility of the Example Model
	What If a Model Is Partially Compatible?

	Instrumenting the Example Model
	Configuring Property-Proving Options
	Analyzing the Example Model
	Customizing the Example Proof
	Reanalyzing the Example Model
	Analyzing Contradictory Models

	Proving Properties in a Subsystem
	Proving Complex Properties
	Property-Proving Examples
	Conditions that Trigger a Result
	Conditions That Cannot Be True Simultaneously
	Increasing or Decreasing Signals
	Conditions with One True Element

	Reviewing the Results
	Examining Simulink Design Verifier Data Files
	About Simulink Design Verifier Data Files
	Overview of the sldvData Structure
	Model Information Fields in sldvData
	ModelInformation Field
	AnalysisInformation Field
	ModelObjects Field
	Objectives Field
	TestCases Field / CounterExamples Field
	Version Field

	Simulating Models with Simulink Design Verifier Data Files

	Exploring Test Harness Models
	About Test Harness Models
	Anatomy of a Test Harness
	Configuration of the Test Harness
	Simulating the Test Harness

	Creating a SystemTest TEST-File
	Understanding Simulink Design Verifier Reports
	About Simulink Design Verifier Reports
	Front Matter
	Summary Chapter
	Analysis Information Chapter
	Model Information
	Analysis Options
	Unsupported Blocks
	Constraints
	Block Replacements Summary
	Approximations

	Test / Proof Objectives Status Chapter
	Model Items Chapter
	Test Cases / Properties Chapter
	Test Cases
	Properties

	Analyzing Large Models and Improving Performance
	Sources of Model Complexity
	Analyzing a Large Model
	Types of Large Model Problems
	Using the Default Parameter Values
	Modifying the Analysis Parameters
	Using the Large Model Optimization
	Stopping the Analysis Before Completion

	Generating Reports for Large Models
	Managing Model Data to Simplify the Analysis
	Simplifying Data Types
	Constraining Data

	Partitioning Model Inputs and Generating Tests Incrementally
	Analyzing the Model Using a Bottom-Up Approach
	Analyzing Logical Operations
	Handling Models with Large State Spaces
	Handling Problems with Counters and Timers
	Techniques for Proving Properties of Large Models

	Function Reference
	Block Reference
	Configuration Parameters
	Design Verifier Pane
	Design Verifier Pane Overview
	Mode
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Maximum analysis time
	Settings
	Command-Line Information

	Display unsatisfiable test objectives
	Settings
	Command-Line Information

	Automatic stubbing of unsupported blocks and functions
	Settings
	Command-Line Information

	Output directory
	Settings
	Tip
	Command-Line Information

	Make output file names unique by adding a suffix
	Settings
	Command-Line Information

	Design Verifier Pane: Block Replacements
	Block Replacements Pane Overview
	See Also

	Apply block replacements
	Settings
	Dependencies
	Command-Line Information
	See Also

	List of block replacement rules
	Settings
	Dependency
	Command-Line Information
	See Also

	File path of the output model
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Parameters
	Parameters Pane Overview
	Apply parameters
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter configuration file
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Test Generation
	Test Generation Pane Overview
	See Also

	Model coverage objectives
	Settings
	Command-Line Information
	See Also

	Test conditions
	Settings
	Command-Line Information
	See Also

	Test objectives
	Settings
	Command-Line Information
	See Also

	Maximum test case steps
	Settings
	Command-Line Information
	See Also

	Test suite optimization
	Settings
	Tip
	Command-Line Information
	See Also

	Design Verifier Pane: Property Proving
	Property Proving Pane Overview
	See Also

	Assertion blocks
	Settings
	Command-Line Information
	See Also

	Proof assumptions
	Settings
	Command-Line Information
	See Also

	Strategy
	Settings
	Dependency
	Command-Line Information
	See Also

	Maximum violation steps
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Results
	Results Pane Overview
	See Also

	Save test data to file
	Settings
	Dependency
	Command-Line Information
	See Also

	Data file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include expected output values
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Randomize data that does not affect outcome
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Save test harness as model
	Settings
	Dependency
	Command-Line Information
	See Also

	Harness model file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Reference input model in generated harness
	Settings
	Command-Line Information
	See Also

	Save test harness as SystemTest TEST-file (will reference saved
	Settings
	Dependency
	Command-Line Information
	See Also

	SystemTest file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Report
	Report Pane Overview
	See Also

	Generate report of the results
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include screen shots of properties and text objectives
	Settings
	Dependency
	Command-Line Information
	See Also

	Display report
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter Command-Line Information Summary

	Simulink Block Support
	Overview of Simulink Block Support
	Additional Math and Discrete Library
	Commonly Used Blocks Library
	Continuous Library
	Discontinuities Library
	Discrete Library
	Logic and Bit Operations
	Lookup Tables Library
	Math Operations
	Model Verification Library
	Model-Wide Utilities Library
	Ports & Subsystems Library
	Signal Attributes Library
	Signal Routing Library
	Sinks Library
	Sources Library
	User-Defined Functions Library

	Embedded MATLAB Subset Support
	Glossary
	Examples
	Automatic Stubbing
	Working with Block Replacements
	Specifying Parameter Configurations
	Generating Test Cases
	Proving Properties of a Model

